User Tools

Site Tools


bacteria:t3e:xopaj

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
bacteria:t3e:xopaj [2020/07/15 12:29]
rkoebnik [References]
— (current)
Line 1: Line 1:
-====== XopAJ ====== 
- 
-Authors: [[https://www.researchgate.net/profile/Ralf_Koebnik|Ralf Koebnik]] & Trainees from the 2<sup>nd</sup>  EuroXanth Training School ([[https://www.researchgate.net/profile/Daiva_Burokiene|Daiva Burokienė]], [[https://www.researchgate.net/profile/ermic_Edyta|Edyta Đermić]], [[https://www.researchgate.net/profile/Dagmar_Stehlikova|Dagmar Stehlikova]], [[https://www.researchgate.net/profile/Mariya_Stoyanova|Mariya Stoyanova]])\\ 
-Internal reviewer: FIXME \\ 
-Expert reviewer: FIXME 
- 
-Class: XopAJ\\ 
-Family: XopAJ\\ 
-Prototype: XopAJ (//Xanthomonas oryzae// pv. //oryzicola//; strain BLS256)\\ 
-RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_014504815.1|WP_014504815.1]] (421 aa)\\ 
-Synonym: AvrRxo1\\ 
-3D structure: [[https://www.rcsb.org/structure/4Z8Q|4Z8Q]], [[https://www.rcsb.org/structure/4Z8T|4Z8T]], [[https://www.rcsb.org/structure/4Z8U|4Z8U]], [[https://www.rcsb.org/structure/4Z8V|4Z8U]] (Han //et al.//, 2015) 
-===== Biological function ===== 
- 
-=== How discovered? === 
- 
-Maize lines that contain the single dominant gene //Rxo1// exhibit a rapid hypersensitive response (HR) after infiltration with the rice bacterial streak pathogen //Xanthomonas oryzae// pv. //oryzicola// (//Xoc//), but not with the rice bacterial blight pathogen //X. oryzae// pv. //oryzae// (//Xoo//). The avirulence effector gene that corresponds to //Rxo1//, designated //avrRxo1//, was identified in an //Xoc// genomic library (Zhao //et al.//, 2004). 
-=== (Experimental) evidence for being a T3E === 
- 
-When expressed in an //Xoo// //hrpC// mutant that is deficient in the type III secretion system, //avrRxo1// did not elicit the HR, indicating that the //avrRxo1//-//Rxo1// interaction is dependent on type III secretion (Zhao //et al.//, 2004). Transient expression in maize lines carrying //Rxo1// resulted in cell death, suggesting that AvrRxo1 functions from inside maize cells to elicit //Rxo1//-dependent pathogen recognition (Zhao //et al.//, 2004). 
-=== Regulation === 
- 
-=== Phenotypes === 
- 
-  * When introduced into //Xoo//, clones containing //avrRxo1//  induced an HR on maize with //Rxo1//, but not on maize without //Rxo1//  (Zhao //et al.//, 2004). 
-  * //Rxo1//  has a nucleotide-binding site-leucine-rich repeat structure, similar to many previously identified //R//  genes (Zhao //et al.//, 2005). //Rxo1//  functions after transfer as a transgene to rice, demonstrating the feasibility of nonhost //R//  gene transfer between cereals (Zhao //et al.//, 2005; Xie //et al.//, 2007). 
-  * AvrRxo1 was found to be cytotoxic when expressed in yeast and caused chlorosis and patches of cell death in the infiltrated leaf areas upon transient expression in tomato and //Nicotiana benthamiana//  (Salomon //et al.//, 2011). 
-  * Variants of AvrRxo1 were found to suppress the HR caused by the non-host resistance recognition of //Xoo//  by //N. benthamiana//  (Liu //et al.//, 2014). 
-  * Among four //avrRxo1//  alleles from different //Xoc//  strains, it was concluded that the toxicity is abolished by a single amino acid substitution at residue 344 in two AvrRxo1 variants (Liu //et al.//, 2014). 
-  * The ATP/GTP binding site motif A and the NLS are required for both the avirulence activity and the suppression of non-host resistance (Liu //et al.//, 2014). 
-  * AvrRxo1 has a T4 polynucleotide kinase domain, and expression of AvrRxo1 suppresses bacterial growth in a manner dependent on the kinase motif (Han //et al.//, 2015). 
-  * The gene product of the adjacent gene, AvrRxo1-ORF2 aka Arc1, functions to suppress the bacteriostatic activity of AvrRxo1 in bacterial cells (Han //et al.//, 2015). 
-  * AvrRxo1 and its binding partner Arc1 function as a toxin-antitoxin system when expressed in //Escherichia coli//  (Triplett //et al.//, 2016). 
-  * Mutation of the catalytic aspartic acid residue D193 abolished AvrRxo1 kinase activity and several phenotypes of AvrRxo1, including toxicity in yeast, bacteria, and plants, suppression of the flg22-triggered ROS burst, and ability to trigger an //R//  gene-mediated hypersensitive response. A mutation in the Walker A ATP-binding motif abolished the toxicity of AvrRxo1, but did not abolish the 3'-NADP production, virulence enhancement, ROS suppression, or HR-triggering phenotypes of AvrRxo1. These results demonstrated that AvrRxo1 targets the central metabolite and redox carrier NAD //in planta//, and that this catalytic activity is required for toxicity and suppression of the ROS burst (Shidore //et al.//, 2017). 
-  * AvrRxo1 targets the cysteine protease RD21A, which is required for drought-induced immunity (Liu et al., 2020). 
- 
-=== Localization === 
- 
-Transient expression of //avrRxo1//  in onion cells after biolistic delivery revealed that the protein product was associated with the plasma membrane (Zhao //et al.//, 2004). 
- 
-=== Enzymatic function === 
- 
-AvrRxo1 has a T4 polynucleotide kinase domain (Han //et al.//, 2015). 
- 
-AvrRxo1 is an authentic phosphotransferase that produces two novel metabolites by phosphorylating nicotinamide/nicotinic acid adenine dinucleotide at the adenosine 3'-hydroxyl group. Both products of AvrRxo1, 3'-NADP and 3'-nicotinic acid adenine dinucleotide phosphate (3'-NAADP), had been used before as inhibitors or signaling molecules but were regarded as "artificial" compounds until then (Schuebel //et al.//, 2016). 
- 
-AvrRxo1 was also found to phosphorylate NAD i//n planta//, and that its kinase catalytic sites are necessary for its toxic and resistance-triggering phenotypes (Shidore //et al.//, 2017). 3'-NADP accumulated upon transient expression of AvrRxo1 in //N. benthamiana//  and in rice leaves infected with //avrRxo1//-expressing strains of //X. oryzae//  (Shidore //et al.//, 2017). 
- 
-=== Interaction partners === 
- 
-Molecular modeling was used to decipher structural mechanisms of AvrRxo1-Rxo1 interaction (Bahadur & Basak, 2014). 
- 
-The gene product of the adjacent gene, AvrRxo1-ORF2 aka Arc1, binds AvrRxo1, but binding is structurally different from typical effector-binding chaperones, in that it has a distinct fold containing a novel kinase-binding domain (Han //et al.//, 2015). 
- 
-AvrRxo1 interacts with both the ubiquitin E3 ligase SINAT4 and the cysteine protease RD21A, enhancing SINAT4 activity, thus promoting the degradation of RD21A in vivo (Liu et al., 2020). 
- 
-===== Conservation ===== 
- 
-=== In xanthomonads === 
- 
-Yes (e.g. //X. alfalfae//, //X. axonopodis//, //X. bromi//, //X. euvesicatoria//, //X. oryzae//, //X. translucens//) 
-=== In other plant pathogens/symbionts === 
- 
-Yes (//Acidovorax// spp., //Burkholderia andropogonis//) (Triplett //et al.//, 2016) 
- 
-===== Conservation ===== 
- 
-=== In xanthomonads === 
- 
-Yes (e.g. //X. alfalfae//, //X. axonopodis//, //X. bromi//, //X. euvesicatoria//, //X. oryzae//, //X. translucens//) 
-=== In other plant pathogens/symbionts === 
- 
-Yes (//Acidovorax// spp., //Burkholderia andropogonis//) (Triplett //et al.//, 2016) 
-===== References ===== 
- 
-Bahadur RP, Basak J (2014). Molecular modeling of protein-protein interaction to decipher the structural mechanism of nonhost resistance in rice. J. Biomol. Struct. Dyn. 32: 669-681. DOI: [[https://doi.org/10.1080/07391102.2013.787370|10.1080/07391102.2013.787370]] 
- 
-Han Q, Zhou C, Wu S, Liu Y, Triplett L, Miao J, Tokuhisa J, Deblais L, Robinson H, Leach JE, Li J, Zhao B (2015). Crystal structure of //Xanthomonas// AvrRxo1-ORF1, a type III effector with a polynucleotide kinase domain, and its interactor AvrRxo1-ORF2. Structure 23: 1900-1909. DOI: [[https://doi.org/10.1016/j.str.2015.06.030|10.1016/j.str.2015.06.030]] 
- 
-Liu H, Chang Q, Feng W, Zhang B, Wu T, Li N, Yao F, Ding X, Chu Z (2014). Domain dissection of AvrRxo1 for suppressor, avirulence and cytotoxicity functions. PLoS One 9: e113875. DOI: [[https://doi.org/10.1371/journal.pone.0113875|10.1371/journal.pone.0113875]] 
- 
-Liu Y, Wang K, Cheng Q, Kong D, Zhang X, Wang Z, Wang Q, Qi X, Yan J, Chu J, Ling H, Li Q, Miao J, Zhao B (2020). Cysteine protease RD21A regulated by E3 ligase SINAT4 is required for drought-induced resistance to //Pseudomonas syringae// in Arabidopsis. J. Exp. Bot., eraa255 (in press). DOI: [[https://doi.org/10.1093/jxb/eraa255|10.1093/jxb/eraa255]] 
- 
-Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]] 
- 
-Salomon D, Dar D, Sreeramulu S, Sessa G (2011). Expression of //Xanthomonas// //campestris// pv. //vesicatoria// type III effectors in yeast affects cell growth and viability. Mol. Plant Microbe Interact. 24: 305-314. DOI: [[https://doi.org/10.1094/MPMI-09-10-0196|10.1094/MPMI-09-10-0196]] 
- 
-Schuebel F, Rocker A, Edelmann D, Schessner J, Brieke C, Meinhart A (2016). 3'-NADP and 3'-NAADP, two metabolites formed by the bacterial type III effector AvrRxo1. J. Biol. Chem. 291: 22868-22880. DOI: [[https://doi.org/10.1074/jbc.M116.751297|10.1074/jbc.M116.751297]] 
- 
-Shidore T, Broeckling CD, Kirkwood JS, Long JJ, Miao J, Zhao B, Leach JE, Triplett LR (2017). The effector AvrRxo1 phosphorylates NAD in planta. PLoS Pathog. 13: e1006442. DOI: [[https://doi.org/10.1371/journal.ppat.1006442|10.1371/journal.ppat.1006442]] 
- 
-Triplett LR, Shidore T, Long J, Miao J, Wu S, Han Q, Zhou C, Ishihara H, Li J, Zhao B, Leach JE (2016). AvrRxo1 Is a bifunctional type III secreted effector and toxin-antitoxin system component with homologs in diverse environmental contexts. PLoS One 11: e0158856. DOI: [[https://doi.org/10.1371/journal.pone.0158856|10.1371/journal.pone.0158856]] 
- 
-Wonni I, Cottyn B, Detemmerman L, Dao S, Ouedraogo L, Sarra S, Tekete C, Poussier S, Corral R, Triplett L, Koita O, Koebnik R, Leach J, Szurek B, Maes M, Verdier V (2014). Analysis of //Xanthomonas oryzae// pv. //oryzicola// population in Mali and Burkina Faso reveals a high level of genetic and pathogenic diversity. Phytopathology 104: 520-531. DOI: [[https://doi.org/10.1094/PHYTO-07-13-0213-R|10.1094/PHYTO-07-13-0213-R]] 
- 
-Xie XW, Yu J, Xu JL, Zhou YL, Li ZK (2007). Introduction of a non-host gene //Rxo1// cloned from maize resistant to rice bacterial leaf streak into rice varieties. Sheng Wu Gong Cheng Xue Bao [Chinese J. Biotechnol.] 23: 607-611. DOI: [[https://doi.org/10.1016/S1872-2075(07)60039-9|10.1016/S1872-2075(07)60039-9]]. 
- 
-Zhao B, Ardales EY, Raymundo A, Bai J, Trick HN, Leach JE, Hulbert SH (2004). The //avrRxo1// gene from the rice pathogen //Xanthomonas oryzae// pv. //oryzicola// confers a nonhost defense reaction on maize with resistance gene //Rxo1//. Mol. Plant Microbe Interact. 17: 771-779. DOI: [[https://doi.org/10.1094/MPMI.2004.17.7.771|10.1094/MPMI.2004.17.7.771]] 
- 
-Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbert S (2005). A maize resistance gene functions against bacterial streak disease in rice. Proc. Natl. Acad. Sci. USA 102: 15383-15388. DOI: [[https://doi.org/10.1073/pnas.0503023102|10.1073/pnas.0503023102]] 
  
bacteria/t3e/xopaj.1594808970.txt.gz · Last modified: 2020/07/15 12:29 by rkoebnik