User Tools

Site Tools


Sidebar

Learn about COST & EuroXanth


Molecular Diagnosis and Diversity for Regulated Xanthomonas


Bacterial virulence factors


Plant resistance genes


List of contributors


Disclaimer

Privacy policy


DokuWiki Syntax


This DokuWiki is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology)


Follow EuroXanth on Twitter, ResearchGate or Scoop.it!

refnotes:refnotes

This is an old revision of the document!


References Database

Overview

This page is supposed to hold all citations used anywhere in the Dokuwiki. It is supposed to be divided into sections if appropriate. Enter records in bibtex format between <code bibtex></code> tags. Citation can be included at any page by typing

[(:euroxanth:name)]

where “name” is the identifier of the citation in the bibtex record. Please use “:cite:” namespace everywhere and use folowing self-explanatory scheme for citation “name”: authorYEARfirst_unique_words_of_title. E.g.:

@Comment{refnotes,
  namespace = ":euroxanth"
}
@Book{Blank2005four, 
	url="http://www.amazon.co.uk/Four-Steps-Epiphany-Steven-Blank/dp/0976470705",
	published="2005",
	title="The four steps to the epiphany", 
	authors="Blank, S.G."
}
@Misc{Doe1999something,
	url="http://example.com",
	published="1999",
	title="Somethong happened to me", 
	authors="Doe, J."

}

You should allways specify the first author. If you are uncertain in year, use underscore instead, e.g. srinivasan_engineering, but don't forget to specify enough words (separated by underscores), to obtain a unique identifier.

See refnotes plugin documentation for further details.

Type 3 effectors publications

@Comment{refnotes,
  namespace = ":euroxanth"
}
 
@Article{Thieme2005,
  author    = "Thieme F and Koebnik R and Bekel T and Berger C and Boch J and Buttner D and Caldana C and Gaigalat L and Goesmann A and Kay S and Kirchner O and Lanz C and Linke B and McHardy AC and Meyer F and Mittenhuber G and Nies DH and Niesbach-Klosgen U and Patschkowski T and Ruckert C and Rupp O and Schneiker S and Schuster SC and Vorholter FJ and Weber E and Puhler A and Bonas U and Bartels D and Kaiser O",
  ref-author= "Thieme et al.",
  title     = "Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence",
  journal   = "J. Bacteriol.",
  volume    = "187(21)",
  year      = 2005,
  pages     = "7254-7266",
  url       = "https://dx.doi.org/10.1128%2FJB.187.21.7254-7266.2005"
}
 
@Article{Dahlbeck1979,
  author    = "Dahlbeck D and Stall RE",
  ref-author= "Dahlbeck & Stall",
  title     = "Mutations for change of race in cultures of Xanthomonas vesicatoria",
  journal   = "Phytopathology",
  volume    = "69",
  year      = 1979,
  pages     = "634-636",
  url       = "https://www.apsnet.org/publications/phytopathology/backissues/Documents/1979Articles/Phyto69n06_634.PDF"
}

Plant resistance genes publications

@Comment{refnotes,
  namespace = ":euroxanth"
}

avrbs1

  1. Dahlbeck, D., and Stall, R. E. 1979. Mutations for change of race in cultures of Xanthomonas vesicatoria. Phytopathology 69:634-636.
  2. Escolar L, Van Den Ackerveken G, Pieplow S, Rossier O, Bonas U. (2001). Type III secretion and in planta recognition of the Xanthomonas avirulence proteins AvrBs1 and AvrBsT. Mol Plant Pathol. 2001 Sep 1;2(5):287-96. doi: 10.1046/j.1464-6722.2001.00077.x.
  3. Gurlebeck D, Jahn S, Gurlebeck N, Szczesny R, Szurek B, Hahn S, Hause G, Bonas U. (2009). Visualization of novel virulence activities of the Xanthomonas type III effectors AvrBs1, AvrBs3 and AvrBs4. Mol. Plant Pathol. 10, 175–188. doi: 10.1111/j.1364-3703.2008.00519.x
  4. Napoli C, Staskawicz. (1987). Molecular characterization of an avirulence gene from race 6 of Pseudomonas syringae pv. glycinea. J. Bacteriol. 169:572-578.
  5. Nyembe NPP. (2014). Development of a reporter system for the analysis of xylophilus ampelinus type III secreted effectors. University of the Western Cape, Thesis. 108 pages
  6. Ronald PC, Staskawicz BJ. (1988). The avirulence gene avrBs1 from Xanthomonas campestris pv. vesicatoria encodes a 50-kD protein. Mol Plant Microbe Interact. 1(5):191-198.
  7. Rongqi XU, Xianzhen LI, Hongyu WEI, Bole JIANG, Kai LI, Yongqiang HE, Jiaxun FENG, Jiliang TANG. (2006). Regulation of eight avr genes by hrpG and hrpX in Xanthomonas campestris pv .campestris and their role in pathogenicity. Progress In Natural Science 16(12):1288-1294.
  8. Stall RE, Loschke DC, Jones JB. (1986). Linkage of copper resistance and avirulence loci on a self-transmissible plasmid in Xanthomonas campestris pv. vesicatoria. Phytopathology 76:240-243.
  9. Swanson J, Kearney B, Dahlbeck D, Staskawicz B. (1988). Cloned avirulence gene of Xanthomonas campestris pv. vesicatoria complements spontaneous race-change mutants. Molecular Plant-Micr Interact 1(1):5-9.
  10. Szczesny R, Büttner D, Escolar L, Schulze S, Seiferth A, Bonas U. (2010). Suppression of the AvrBs1-specific hypersensitive response by the YopJ effector homolog AvrBsT from Xanthomonas depends on a SNF1-related kinase. New Phytol. 2010;187(4):1058-74. doi: 10.1111/j.1469-8137.2010.03346.x.
  11. Teper D, Sunitha S, Martin GB, Sessa G. (2015). Five Xanthomonas type III effectors suppress cell death induced by components of immunity associated MAP kinase cascades. Plant Signaling & Behavior, 10:10, e1064573, DOI: 10.1080/15592324.2015.1064573
  12. Thieme F, Koebnik R, Bekel T, Berger C, Boch J, Buttner D, Caldana C, Gaigalat L, Goesmann A, Kay S, Kirchner O, Lanz C, Linke B, McHardy AC, Meyer F, Mittenhuber G, Nies DH, Niesbach-Klosgen U, Patschkowski T, Ruckert C, Rupp O, Schneiker S, Schuster SC, Vorholter FJ, Weber E, Puhler A, Bonas U, Bartels D, Kaiser O. (2005). Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J. Bacteriol. 187(21):7254-7266
  13. Kearney B, Staskawicz BJ (1990). Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene avrBs2Nature346(6282), 385. doi: 10.1038/346385a0

avrbs2

  1. Casper-Lindley C. Dahlbeck D, Clark ET, Staskawicz BJ (2002). Direct biochemical evidence for type III secretion-dependent translocation of the AvrBs2 effector protein into plant cells. Proceedings of the National Academy of Sciences99(12), 8336-8341. doi: 10.1073/pnas.122220299
  2. Wei C, Ding T, Chang C, Yu C, Li X, Liu Q (2019). Global Regulator PhoP is Necessary for Motility, Biofilm Formation, Exoenzyme Production and Virulence of Xanthomonas citri subsp. citri on Citrus Plants. Genes10(5), 340. doi: 10.3390/genes10050340
  3. Liu Y, Long J, Shen D, Song C (2016). Xanthomonas oryzae pv. oryzae requires H-NS-family protein XrvC to regulate virulence during rice infection. FEMS microbiology letters363(10), fnw067. doi: 10.1093/femsle/fnw067
  4. Zhao B, Dahlbeck D, Krasileva KV, Fong RW, Staskawicz BJ (2011). Computational and biochemical analysis of the Xanthomonas effector AvrBs2 and its role in the modulation of Xanthomonas type three effector delivery. PLoS pathogens7(12), e1002408. doi: 10.1371/journal.ppat.1002408
  5. Medina CA, Reyes PA, Trujillo CA, Gonzalez JL, Bejarano DA, Montenegro NA, Jacobs JM, Joe A, Restrepo S, Alfano JR, Bernal A (2018). The role of type III effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity. Molecular plant pathology19(3), 593-606. doi: 10.1111/mpp.12545
  6. Li S, Wang Y, Wang S, Fang A, Wang J, Liu L,  Zhang K, Mao Y, Sun W (2015). The type III effector AvrBs2 in Xanthomonas oryzae pv. oryzicola suppresses rice immunity and promotes disease development. Molecular Plant-Microbe Interactions28(8), 869-880. doi: 10.1094/MPMI-10-14-0314-R
  7. Park SR, Moon SJ, Shin DJ, Kim MG, Hwang DJ, Bae SC, Kim JG , Yi BY, Byun MO (2010). Isolation and characterization of rice OsHRL gene related to bacterial blight resistance. The Plant Pathology Journal26(4), 417-420. doi: 10.5423/PPJ.2010.26.4.417
  8. Coplin DL (1989). Plasmids and their role in the evolution of plant pathogenic bacteria. Annual review of phytopathology27(1), 187-212. doi: 10.1146/annurev.py.27.090189.001155
  9. Minsavage GV, Dahlbeck D, Whalen MC, Kearney B, Bonas U, Staskawicz BJ, Stall RE (1990). Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria-pepper interactions. Molecular Plant-Microbe Interactions3(1), 41-47. doi: 10.1094/MPMI-3-041

avrbs3

  1. Stella, S., Molina, R., Yefimenko, I., Prieto, J., Silva, G., Bertonati, C., … & Montoya, G. (2013). Structure of the AvrBs3–DNA complex provides new insights into the initial thymine-recognition mechanism. Acta Crystallographica Section D: Biological Crystallography, 69(9), 1707-1716. DOI: 10.1107/S0907444913016429
  2. Minsavage, G. V., Dahlbeck, D., Whalen, M. C., Kearney, B., Bonas, U., Staskawicz, B. J., & Stall, R. E. (1990). Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria-pepper interactions. Molecular Plant-Microbe Interactions, 3(1), 41-47. DOI: 10.1094/MPMI-3-041
  3. Bonas, U., Stall, R. E., & Staskawicz, B. (1989). Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Molecular and General Genetics MGG, 218(1), 127-136. https://doi.org/10.1007/BF00330575
  4. Bonas, U., Schulte, R., Fenselau, S., Minsavage, G. V., Staskawicz, B. J., & Stall, R. E. (1991). Isolation of a gene cluster from Xanthomonas campestris pv. vesicatoria that determines pathogenicity and the hypersensitive response on pepper and tomato. Mol. Plant-Microbe Interact, 4(1), 81-88. DOI: 10.1094/MPMI-4-081
  5. Van den Ackerveken, G., Marois, E., & Bonas, U. (1996). Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell, 87(7), 1307-1316. https://doi.org/10.1016/S0092-8674(00)81825-5
  6. Bonas, U., & Van den Ackerveken, G. (1999). Gene-for-gene interactions: bacterial avirulence proteins specify plant disease resistance. Current opinion in microbiology, 2(1), 94-98. https://doi.org/10.1016/S1369-5274(99)80016-2
  7. Rossier, O., Wengelnik, K., Hahn, K., & Bonas, U. (1999). The Xanthomonas Hrp type III system secretes proteins from plant and mammalian bacterial pathogens. Proceedings of the National Academy of Sciences, 96(16), 9368-9373. https://doi.org/10.1073/pnas.96.16.9368
  8. Szurek, B., Rossier, O., Hause, G., & Bonas, U. (2002). Type III‐dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell. Molecular microbiology, 46(1), 13-23. https://doi.org/10.1046/j.1365-2958.2002.03139.x
  9. Kay, S., Hahn, S., Marois, E., Hause, G., & Bonas, U. (2007). A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science, 318(5850), 648-651. DOI: 10.1126/science.1144956
  10. Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., … & Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326(5959), 1509-1512. DOI: 10.1126/science.1178811
  11. Moscou, M. J., & Bogdanove, A. J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science, 326(5959), 1501-1501. DOI: 10.1126/science.1178817
  12. Herbers, K., Conrads-Strauch, J., & Bonas, U. (1992). Race-specificity of plant resistance to bacterial spot disease determined by repetitive motifs in a bacterial avirulence protein. Nature, 356(6365), 172. https://doi.org/10.1038/356172a0
  13. Lee, A. H. Y., Middleton, M. A., Guttman, D. S., & Desveaux, D. (2013). Phytopathogen type III effectors as probes of biological systems. Microbial biotechnology, 6(3), 230-240. https://doi.org/10.1111/1751-7915.12042
  14. Gürlebeck, D., Szurek, B., & Bonas, U. (2005). Dimerization of the bacterial effector protein AvrBs3 in the plant cell cytoplasm prior to nuclear import. The Plant Journal, 42(2), 175-187. https://doi.org/10.1111/j.1365-313X.2005.02370.x
  15. Marois, E., Van den Ackerveken, G., & Bonas, U. (2002). The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. Molecular Plant-Microbe Interactions, 15(7), 637-646. https://doi.org/10.1094/MPMI.2002.15.7.637
  16. Hopkins, C. M., White, F. F., Choi, S. H., Guo, A., & Leach, J. E. (1992). Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact, 5(6), 451-459.
  17. Heuer, H., Yin, Y. N., Xue, Q. Y., Smalla, K., & Guo, J. H. (2007). Repeat domain diversity of avrBs3-like genes in Ralstonia solanacearum strains and association with host preferences in the field. Appl. Environ. Microbiol., 73(13), 4379-4384. –DOI:– 10.1128/AEM.00367-07

reviews

  1. Khan M, Seto D, Subramaniam R, Desveaux D (2018). Oh, the places they'll go! A survey of phytopathogen effectors and their host targets. Plant J. 93(4): 651-663. doi: 10.1111/tpj.13780.
  2. Lin YH, Machner MP (2017). Exploitation of the host cell ubiquitin machinery by microbial effector proteins. J. Cell Sci. 130(12): 1985-1996. doi: 10.1242/jcs.188482.
  3. Büttner D (2016). Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol. Rev. 40(6): 894-937. doi: 10.1093/femsre/fuw026.
  4. Pfeilmeier S, Caly DL, Malone JG (2016). Bacterial pathogenesis of plants: future challenges from a microbial perspective: challenges in bacterial molecular plant pathology. Mol. Plant Pathol. 17(8): 1298-1313. doi: 10.1111/mpp.12427.
  5. Doyle EL, Stoddard BL, Voytas DF, Bogdanove AJ (2013). TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Trends Cell Biol. 23(8): 390-398. doi: 10.1016/j.tcb.2013.04.003.
  6. Lewis JD, Lee A, Ma W, Zhou H, Guttman DS, Desveaux D (2011). The YopJ superfamily in plant-associated bacteria. Mol. Plant Pathol. 12(9): 928-937. doi: 10.1111/j.1364-3703.2011.00719.x.
  7. Dean P (2011). Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol. Rev. 35(6): 1100-1125. doi: 10.1111/j.1574-6976.2011.00271.x.
  8. Scholze H, Boch J (2011). TAL effectors are remote controls for gene activation. Curr. Opin. Microbiol. 14(1): 47-53. doi: 10.1016/j.mib.2010.12.001.
  9. Boch J, Bonas U (2010). Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu. Rev Phytopathol. 48: 419-36. doi: 10.1146/annurev-phyto-080508-081936.
  10. Büttner D, Bonas U (2010). Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol. Rev. 34(2): 107-133. doi:10.1111/j.1574-6976.2009.00192.x.
  11. Kay S, Bonas U (2009). How Xanthomonas type III effectors manipulate the host plant. Curr. Opin. Microbiol. 12(1): 37-43. doi: 10.1016/j.mib.2008.12.006.
  12. White FF, Potnis N, Jones JB, Koebnik R (2009). The type III effectors of Xanthomonas. Mol. Plant Pathol. 10(6): 749-766. doi: 10.1111/j.1364-3703.2009.00590.x

xopac

  1. R.Q. Xu, S. Blanvillain, J.X. Feng, B.L. Jiang, X.Z. Li, H.Y. Wei, T. Kroj, E. Lauber, D. Roby, B. Chen, Y.Q. He, G.T. Lu, D.J. Tang, J. Vasse, M. Arlat, and J.L. Tang, AvrAC(Xcc8004), a type III effector with a leucine-rich repeat domain from Xanthomonas campestris pathovar campestris confers avirulence in vascular tissues of Arabidopsis thaliana ecotype Col-0. J Bacteriol 190 (2008) 343-55. 10.1128/JB.00978-07
  2. A. Cerutti, A. Jauneau, M.-C. Auriac, E. Lauber, Y. Martinez, S. Chiarenza, N. Leonhardt, R. Berthomé, and L.D. Noël, Immunity at cauliflower hydathodes controls infection by Xanthomonas campestris pv. campestris. Plant Physiol 174 (2017) 700-712. 10.1104/pp.16.01852
  3. E. Guy, M. Lautier, M. Chabannes, B. Roux, E. Lauber, M. Arlat, and L.D. Noël, xopAC-triggered Immunity against Xanthomonas Depends on Arabidopsis Receptor-Like Cytoplasmic Kinase Genes PBL2 and RIPK. PLoS One 8 (2013) e73469. 10.1371/journal.pone.0073469
  4. F. Feng, F. Yang, W. Rong, X. Wu, J. Zhang, S. Chen, C. He, and J.M. Zhou, A Xanthomonas uridine 5'-monophosphate transferase inhibits plant immune kinases. Nature 485 (2012) 114-8. 10.1038/nature10962
  5. G. Wang, B. Roux, F. Feng, E. Guy, L. Li, N. Li, X. Zhang, M. Lautier, M.F. Jardinaud, M. Chabannes, M. Arlat, S. Chen, C. He, L.D. Noël, and J.M. Zhou, The Decoy Substrate of a Pathogen Effector and a Pseudokinase Specify Pathogen-Induced Modified-Self Recognition and Immunity in Plants. Cell Host Microbe 18 (2015) 285-95. 10.1016/j.chom.2015.08.004
  6. E. Guy, A. Genissel, A. Hajri, M. Chabannes, P. David, S. Carrère, M. Lautier, B. Roux, T. Boureau, M. Arlat, S. Poussier, and L.D. Noël, Natural Genetic Variation of Xanthomonas campestris pv. campestris Pathogenicity on Arabidopsis Revealed by Association and Reverse Genetics. MBio 4 (2013) e00538-12. 10.1128/mBio.00538-12

xopad

  1. Teper, D. et al. Identification of novel Xanthomonas euvesicatoria type III effector proteins by a machine-learning approach. Mol. Plant Pathol. 17, 398–411 (2016)
  2. Escalon, A. et al. Variations in type III effector repertoires, pathological phenotypes and host range of Xanthomonas citri pv. citri pathotypes. Mol. Plant Pathol. 14, 483–96 (2013).
  3. Harrison, J. & Studholme, D. J. Draft genome sequence of Xanthomonas axonopodis pathovar vasculorum NCPPB 900. FEMS Microbiol. Lett. 360, 113–6 (2014).
  4. Wasukira, A. et al. Genome-wide sequencing reveals two major sub-lineages in the genetically monomorphic pathogen Xanthomonas campestris pathovar musacearum. Genes (Basel). 3, 361–377 (2012).
  5. Studholme, D. J. et al. Genome-wide sequencing data reveals virulence factors implicated in banana Xanthomonas wilt. FEMS Microbiol. Lett. 310, 182–192 (2010).
  6. Vicente, J. G., Rothwell, S., Holub, E. B. & Studholme, D. J. Pathogenic, phenotypic and molecular characterisation of Xanthomonas nasturtii sp. nov. and Xanthomonas floridensis sp. nov., new species of Xanthomonas associated with watercress production in Florida. Int. J. Syst. Evol. Microbiol. 67, 3645–3654 (2017).
  7. Peeters, N. et al. Repertoire, unified nomenclature and evolution of the Type III effector gene set in the Ralstonia solanacearum species complex. BMC Genomics 14, 859 (2013).

xopae

  1. Popov G, Majhi BB, Sessa G. 2018. Effector gene xopAE of Xanthomonas euvesicatoria 85-10 Is part of an operon and encodes an E3 ubiquitin ligase. J. Bacteriol. 16: 00104-18
  2. Noel L, Thieme F, Nennstiel D, Bonas U. 2002. Two novel type III-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp pathogenicity island. J Bacteriol 184:1340-1348.
  3. Popov G, Fraiture M, Brunner F, Sessa G. 2016. Multiple Xanthomonas euvesicatoria type III effectors inhibit flg22-triggered immunity. Mol Plant-Microbe Interact 29:651-60.

xopaf

  1. Minsavage, G.V ., Jones, J.B., Stall, R.E. (1996). Cloning and sequencing of an avirulence gene (avrRxv3) isolated from Xanthomonas campestris pv. vesicatoria tomato race 3. Phytopathology, 86, S15
  2. Roden, A.J., Belt, B., Ross, B.J., Tachibana, T., Vargas, J., Mudgett, B.M. (2004) A genetic screen to isolate type III effectors traslocated into pepper cells during Xanthomonas infection. PNAS 101(47) : 16624-16629.
  3. Astua-Monge, G., Minsavage, V.G., Stall, E.R., Davis, J.M., Bonas, U., Jones, B.J. (2000) : Resistance of Tomato and Pepper to T3 Strains of Xanthomonas campestris pv. vesicatoria Is Specified by a Plant-Inducible Avirulence Gene. Molecular Plant-Microbe Interactions, 13 (9), 2000/913.
  4. Washington, E.J., Mukhtar, M.S., Finkel, M.O., Wan, L., Banfield, J.M., Kieber, J.J., Dangl, L.J. (2016). Pseudomonas syringae type III effector HopAF1 suppresses plant immunity by targeting methionine recycling to block ethylene induction. Proc Natl Acad Sci USA,. 113 (25) E3577-E3586.

xopah

  1. Qian W, Jia Y, Ren S X, He Y Q, Feng J X, Lu L F, Sun Q, Ying G, Tang D J, Tang H, Wu W, Hao P, Wang L, Jiang B L, Zeng S, Gu W Y, Lu G, Rong L, Tian Y, Yao Z, Fu G, Chen B, Fang R, Qiang B, Chen Z, Zhao G P, Tang J L and He C (2005) Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Research 15: 757-767. doi: 10.1101/gr.3378705
  2. Wang L, Tang, X, He, C (2007) The bifunctional effector AvrXccC of Xanthomonas campestris pv. campestris requires plasma membrane‐anchoring for host recognition. Mol. Plant Pathology 8: 491-501. doi: 10.1111/j.1364-3703.2007.00409.x
  3. Castenada A, Reddy J D, El-Yacoubi B, Gabriel, D W (2005) Mutagenesis of all eight avr genes in Xanthomonas campestris pv. campestris had no detected effect on pathogenicity, but one avr gene affected race specificity. Mol. Plant Microbe Interactions 18: 1306-1317. doi: 10.1094/MPMI-18-1306.

xopaj

  1. Zhao B, Ardales EY, Raymundo A, Bai J, Trick HN, Leach JE, Hulbert SH (2004-Jul). The avrRxo1 gene from the rice pathogen Xanthomonas oryzae pv. oryzicola confers a nonhost defense reaction on maize with resistance gene Rxo1. Mol. Plant Microbe Interact. 17(7): 771-779.
  2. Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbert S (2005-Oct). A maize resistance gene functions against bacterial streak disease in rice. Proc. Natl. Acad. Sci. U. S. A. 102(43): 15383-15388.
  3. Xie XW, Yu J, Xu JL, Zhou YL, Li ZK (2007-Jul). Introduction of a non-host gene Rxo1 cloned from maize resistant to rice bacterial leaf streak into rice varieties. Sheng Wu Gong Cheng Xue Bao 23(4): 607-611.
  4. Salomon D, Dar D, Sreeramulu S, Sessa G (2011-Mar). Expression of Xanthomonas campestris pv. vesicatoria type III effectors in yeast affects cell growth and viability. Mol. Plant Microbe Interact. 24(3): 305-314. doi: 10.1094/MPMI-09-10-0196.
  5. Wonni I, Cottyn B, Detemmerman L, Dao S, Ouedraogo L, Sarra S, Tekete C, Poussier S, Corral R, Triplett L, Koita O, Koebnik R, Leach J, Szurek B, Maes M, Verdier V (2014-May). Analysis of Xanthomonas oryzae pv. oryzicola population in Mali and Burkina Faso reveals a high level of genetic and pathogenic diversity. Phytopathology 104(5): 520-531. doi: 10.1094/PHYTO-07-13-0213-R.
  6. Bahadur RP, Basak J (2014-Apr). Molecular modeling of protein-protein interaction to decipher the structural mechanism of nonhost resistance in rice. J. Biomol. Struct. Dyn. 32(4): 669-681. doi: 10.1080/07391102.2013.787370.
  7. Ji ZY, Xiong L, Zou LF, Li YR, Ma WX, Liu L, Zakria M, Ji GH, Chen GY (2014-Sep). AvrXa7-Xa7 mediated defense in rice can be suppressed by transcriptional activator-like effectors TAL6 and TAL11a from Xanthomonas oryzae pv. oryzicola. Mol. Plant Microbe Interact. 27(9): 983-995. doi: 10.1094/MPMI-09-13-0279-R. Retraction in: Mol Plant Microbe Interact. (2014-Dec) 27(12): 1413.
  8. Liu H, Chang Q, Feng W, Zhang B, Wu T, Li N, Yao F, Ding X, Chu Z (2014-Dec). Domain dissection of AvrRxo1 for suppressor, avirulence and cytotoxicity functions. PLoS One 9(12): e113875. doi: 10.1371/journal.pone.0113875.
  9. Han Q, Zhou C, Wu S, Liu Y, Triplett L, Miao J, Tokuhisa J, Deblais L, Robinson H, Leach JE, Li J, Zhao B (2015-Oct). Crystal structure of Xanthomonas AvrRxo1-ORF1, a type III effector with a polynucleotide kinase domain, and its interactor AvrRxo1-ORF2. Structure 23(10): 1900-1909. doi: 10.1016/j.str.2015.06.030.
  10. Triplett LR, Shidore T, Long J, Miao J, Wu S, Han Q, Zhou C, Ishihara H, Li J, Zhao B, Leach JE (2016-Jul). AvrRxo1 Is a bifunctional type III secreted effector and toxin-antitoxin system component with homologs in diverse environmental contexts. PLoS One 11(7): e0158856. doi: 10.1371/journal.pone.0158856.
  11. Popov G, Fraiture M, Brunner F, Sessa G (2016-Aug). Multiple Xanthomonas euvesicatoria type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29(8): 651-660. doi: 10.1094/MPMI-07-16-0137-R.
  12. Schuebel F, Rocker A, Edelmann D, Schessner J, Brieke C, Meinhart A (2016-Oct). 3'-NADP and 3'-NAADP, two metabolites formed by the bacterial type III effector AvrRxo1. J. Biol. Chem. 291(44): 22868-22880. doi: 10.1074/jbc.M116.751297.
  13. Shidore T, Broeckling CD, Kirkwood JS, Long JJ, Miao J, Zhao B, Leach JE, Triplett LR (2017-Jun). The effector AvrRxo1 phosphorylates NAD in planta. PLoS Pathog. 13(6): e1006442. doi: 10.1371/journal.ppat.1006442.

xopak

  1. Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel Xanthomonas euvesicatoria type III effector proteins by a machine‐learning approach. Mol. Plant Pathol. 17(3): 398-411. doi: 10.1111/mpp.12288
  2. Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R (2016) Whole-Genome Sequences of Xanthomonas euvesicatoria strains clarify taxonomy and reveal a stepwise erosion of Type 3 Effectors. Front. Plant Sci. doi: 10.3389/fpls.2016.01805
  3. Li G, Froehlich JE, Elowsky C, Msanne J, Ostosh AC, Zhang C, Awada T, Alfano JR (2014) Distinct Pseudomonas type-III effectors use a cleavable transit peptide to target chloroplasts. Plant J. 77: 310–321, doi: **10.1111/tpj.12396**

xopal1

  1. Jiang W, Jiang BL, Xu RQ, Huang JD, Wei HY, Jiang GF, Cen WJ, Liu J, Ge YY, Li GH, Su LL, Hang XH, Tang DJ, Lu GT, Feng JX, He YQ, Tang JL (2009). Identification of six type III effector genes with the PIP box in Xanthomonas campestris pv. campestris and five of them contribute individually to full pathogenicity. Mol Plant Microbe Interact. 22:1401-1411. doi: 10.1094/MPMI-22-11-1401.
  2. Roux B, Bolot S, Guy E, Denancé N, Lautier M, Jardinaud MF, Fischer-Le Saux M, Portier P, Jacques MA, Gagnevin L, Pruvost O, Lauber E, Arlat M, Carrère S, Koebnik R, Noël LD (2015). Genomics and transcriptomics of Xanthomonas campestris species challenge the concept of core type III effectome. BMC Genomics. 16: 975. doi: 10.1186/s12864-015-2190-0.
  3. Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli SV, Patil PB, Van Sluys MA, Ryan RP, Meyer DF, Han SW, Aparna G, Rajaram M, Delcher AL, Phillippy AM, Puiu D, Schatz MC, Shumway M, Sommer DD, Trapnell C, Benahmed F, Dimitrov G, Madupu R, Radune D, Sullivan S, Jha G, Ishihara H, Lee SW, Pandey A, Sharma V, Sriariyanun M, Szurek B, Vera-Cruz CM, Dorman KS, Ronald PC, Verdier V, Dow JM, Sonti RV, Tsuge S, Brendel VP, Rabinowicz PD, Leach JE, White FF, Salzberg SL.(2011). Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J Bacteriol. 193: 5450-64. doi: 10.1128/JB.05262-11.
  4. Peeters N, Carrère S, Anisimova M, Plener L, Cazalé AC, Genin S. (2013). Repertoire, unified nomenclature and evolution of the Type III effector gene set in the Ralstonia solanacearum species complex. BMC Genomics. 14: 859. doi: 10.1186/1471-2164-14-859.
  5. Nissinen RM, Ytterberg AJ, Bogdanove AJ, VAN Wijk KJ, Beer SV. (2007). Analyses of the secretomes of Erwinia amylovora and selected hrp mutants reveal novel type III secreted proteins and an effect of HrpJ on extracellular harpin levels. Mol Plant Pathol. 8:55-67. doi: 10.1111/j.1364-3703.2006.00370.x.
  6. Bocsanczy AM, Schneider DJ, DeClerck GA, Cartinhour S, Beer SV. (2012). HopX1 in Erwinia amylovora functions as an avirulence protein in apple and is regulated by HrpL. J Bacteriol. 194 :553-560. doi: 10.1128/JB.05065-11.

xopal2

  1. Vorhölter FJ, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T, Rückert C, Schmid J, Sidhu VK, Sieber V, Tauch A, Watt SA, Weisshaar B, Becker A, Niehaus K, Pühler A. (2008). The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol. 134: 33-45. doi: 10.1016/j.jbiotec.2007.12.013.
  2. Roux B, Bolot S, Guy E, Denancé N, Lautier M, Jardinaud MF, Fischer-Le Saux M, Portier P, Jacques MA, Gagnevin L, Pruvost O, Lauber E, Arlat M, Carrère S, Koebnik R, Noël LD (2015). Genomics and transcriptomics of Xanthomonas campestris species challenge the concept of core type III effectome. BMC Genomics. 16: 975. doi: 10.1186/s12864-015-2190-0.
  3. Peeters N, Carrère S, Anisimova M, Plener L, Cazalé AC, Genin S. (2013). Repertoire, unified nomenclature and evolution of the Type III effector gene set in the Ralstonia solanacearum species complex. BMC Genomics. 14: 859. doi: 10.1186/1471-2164-14-859.
  4. Nissinen RM, Ytterberg AJ, Bogdanove AJ, VAN Wijk KJ, Beer SV. (2007). Analyses of the secretomes of Erwinia amylovora and selected hrp mutants reveal novel type III secreted proteins and an effect of HrpJ on extracellular harpin levels. Mol Plant Pathol. 8:55-67. doi: 10.1111/j.1364-3703.2006.00370.x.
  5. Bocsanczy AM, Schneider DJ, DeClerck GA, Cartinhour S, Beer SV. (2012). HopX1 in Erwinia amylovora functions as an avirulence protein in apple and is regulated by HrpL. J Bacteriol. 194 :553-560. doi: 10.1128/JB.05065-11.

xopap

  1. Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel Xanthomonas euvesicatoria type III effector proteins by a machine‐learning approach. Mol. Plant Pathol. 17(3): 398-411. doi: 10.1111/mpp.12288
  2. Popov G, Fraiture M, Brunner F, Sessa G (2018). Multiple Xanthomonas euvesicatoria type III effectors inhibit flg22-triggered immunity. Mol. Plant-Microbe Interact. 29(8):651-660. doi: https://doi.org/10.1094/MPMI-07-16-0137-R
  3. Peeters N, Carrere S, Anisimova M, Plener L, Cazale AC, Genin S (2013). Repertoire, unified nomenclature and evolution of the type III effector gene set in the Ralstonia solanacearum species complex. BMC Genom. 14: 859. doi: https://doi.org/10.1186/1471-2164-14-859
  4. Nakano M, Mukaihara T (2018). Ralstonia solanacearum type III effector RipAL targets chloroplasts and induces jasmonic acid production to suppress salicylic acid-mediated responses in plants. Plant Cell Physiol. 59(12):2576-2589. doi: 10.1093/pcp/pcy177.

xopaq

  1. Escalon A, Javegny S, Vernière C, Noël LD, Vital K, Poussier S, Hajri A, Boureau T, Pruvost O, Arlat M, Gagnevin L. Variations in type III effector repertoires, pathological phenotypes and host range of Xanthomonas citri pv. citri pathotypes. Mol Plant Pathol. 2013 Jun;14(5):483-96. doi:10.1111/mpp.12019.
  2. Dalio RJD, Magalhães DM, Rodrigues CM, Arena GD, Oliveira TS, Souza-Neto RR, Picchi SC, Martins PMM, Santos PJC, Maximo HJ, Pacheco IS, De Souza AA, Machado MA. PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. Ann Bot. 2017 Mar 1;119(5):749-774. doi: 10.1093/aob/mcw238.
  3. Schwartz AR, Potnis N, Timilsina S, Wilson M, Patané J, Martins J Jr,Minsavage GV, Dahlbeck D, Akhunova A, Almeida N, Vallad GE, Barak JD, White FF, Miller SA, Ritchie D, Goss E, Bart RS, Setubal JC, Jones JB, Staskawicz BJ. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Front Microbiol. 2015 Jun 3;6:535. doi: 10.3389/fmicb.2015.00535.
  4. Ferreira MASV, Bonneau S, Briand M, Cesbron S, Portier P, Darrasse A, Gama MAS, Barbosa MAG, Mariano RLR, Souza EB, Jacques MA. Xanthomonas citri pv. viticola Affecting Grapevine in Brazil: Emergence of a Successful Monomorphic Pathogen. Front Plant Sci. 2019 Apr 18;10:489. doi: 10.3389/fpls.2019.00489.
  5. Garita-Cambronero J, Sena-Vélez M, Ferragud E, Sabuquillo P, Redondo C, Cubero J. Xanthomonas citri subsp. citri and Xanthomonas arboricola pv. pruni: Comparative analysis of two pathogens producing similar symptoms in different host plants. PLoS One. 2019 Jul 18;14(7):e0219797. doi: 10.1371/journal.pone.0219797.
  6. Garita-Cambronero J, Palacio-Bielsa A, Cubero J. Xanthomonas arboricola pv. pruni, causal agent of bacterial spot of stone fruits and almond: its genomic and phenotypic characteristics in the X. arboricola species context. Mol Plant Pathol. 2018 Sep;19(9):2053-2065. doi: 10.1111/mpp.12679.
  7. Garita-Cambronero J, Palacio-Bielsa A, López MM, Cubero J. Comparative Genomic and Phenotypic Characterization of Pathogenic and Non-Pathogenic Strains of Xanthomonas arboricola Reveals Insights into the Infection Process of Bacterial Spot Disease of Stone Fruits. PLoS One. 2016 Aug 29;11(8):e0161977. doi: 10.1371/journal.pone.0161977.
  8. Potnis N, Krasileva K, Chow V, Almeida NF, Patil PB, Ryan RP, Sharlach M, Behlau F, Dow JM, Momol M, White FF, Preston JF, Vinatzer BA, Koebnik R, Setubal JC, Norman DJ, Staskawicz BJ, Jones JB. Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genomics. 2011 Mar 11;12:146. doi: 10.1186/1471-2164-12-146.
  9. Jalan N, Kumar D, Andrade MO, Yu F, Jones JB, Graham JH, White FF, Setubal JC,Wang N. Comparative genomic and transcriptome analyses of pathotypes of Xanthomonas citri subsp. citri provide insights into mechanisms of bacterial virulence and host range. BMC Genomics. 2013 Aug 14;14:551. doi: 10.1186/1471-2164-14-551.
  10. Jibrin MO, Potnis N, Timilsina S, Minsavage GV, Vallad GE, Roberts PD, Jones JB, Goss EM. Genomic Inference of Recombination-Mediated Evolution in Xanthomonas euvesicatoria and X. perforans. Appl Environ Microbiol. 2018 Jun 18;84(13). pii: e00136-18. doi: 10.1128/AEM.00136-18.
  11. Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R. Whole-Genome Sequences of Xanthomonas euvesicatoria Strains Clarify Taxonomy and Reveal a Stepwise Erosion of Type 3 Effectors. Front Plant Sci. 2016 Dec 9;7:1805. doi: 10.3389/fpls.2016.01805.
  12. Mukaihara T, Tamura N, Iwabuchi M. Genome-wide identification of a large repertoire of Ralstonia solanacearum type III effector proteins by a new functional screen. Mol Plant Microbe Interact. 2010 Mar;23(3):251-62. doi:10.1094/MPMI-23-3-0251.
  13. Garita-Cambronero J. Doctoral Thesis. Genómica comparativa de cepas de Xanthomonas arborícola asociadas a Prunus ssp. Caracterización de los procesos de infección de la mancha bacteriana de frutales de hueso y almendro. 2016. Universidad Politécnica de Madrid.

xopau

  1. Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel Xanthomonas euvesicatoria type III effector proteins by a machine‐learning approach. Mol. Plant Pathol. 17(3): 398-411. doi: 10.1111/mpp.12288
  2. Teper D, Girija AM, Bosis E, Popov G, Savidor A, Sessa G (2018). The Xanthomonas euvesicatoria type III effector XopAU is an active protein kinase that manipulates plant MAP kinase signaling. PLoS Pathog. 14(1): e1006880. doi: 10.1371/journal.ppat.1006880
  3. Guo Y, Figueiredo F, Jones J, Wang N (2011). HrpG and HrpX play global roles in coordinating different virulence traits of Xanthomonas axonopodis pv. citri. Mol. Plant Microbe Interact. 24(6): 649-661. doi: 10.1094/MPMI-09-10-0209
  4. Dubrow Z, Sunitha S, Kim JG, Aakre CD, Girija AM, Sobol G, Teper D, Chen YC, Ozbaki-Yagan N, Vance H, Sessa G, Mudgett MB (2018). Tomato 14-3-3 proteins are required for Xv3 disease resistance and interact with a subset of Xanthomonas euvesicatoria effectors. Mol. Plant Microbe Interact. 31(12): 1301-1311. doi: 10.1094/MPMI-02-18-0048-R

xopaw

  1. Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel Xanthomonas euvesicatoria type III effector proteins by a machine‐learning approach. Mol. Plant Pathol. 17(3): 398-411. doi: 10.1111/mpp.12288
  2. Popov G, Fraiture M, Brunner F, Sessa G (2018). Multiple Xanthomonas euvesicatoria type III effectors inhibit flg22-triggered immunity. Mol. Plant-Microbe Interact. 29(8):651-660. doi: https://doi.org/10.1094/MPMI-07-16-0137-R

xopb

  1. Noël L, Thieme F, Nennstiel D, Bonas U (2001). cDNA-AFLP analysis unravels a genome-wide hrpG-regulon in the plant pathogen Xanthomonas campestris pv. vesicatoria. Mol. Microbiol. 41(6): 1271-1281. doi: 10.1046/j.1365-2958.2001.02567.x.
  2. Salomon D, Dar D, Sreeramulu S, Sessa G (2011). Expression of Xanthomonas campestris pv. vesicatoria type III effectors in yeast affects cell growth and viability. Mol. Plant Microbe Interact. 24(3): 305-314. doi: 10.1094/MPMI-09-10-0196.
  3. Schulze S, Kay S, Büttner D, Egler M, Eschen-Lippold L, Hause G, Krüger A, Lee J, Müller O, Scheel D, Szczesny R, Thieme F, Bonas U (2012). Analysis of new type III effectors from Xanthomonas uncovers XopB and XopS as suppressors of plant immunity. New Phytol. 195(4): 894-911. doi: 10.1111/j.1469-8137.2012.04210.x.
  4. Sonnewald S, Priller JP, Schuster J, Glickmann E, Hajirezaei MR, Siebig S, Mudgett MB, Sonnewald U (2012). Regulation of cell wall-bound invertase in pepper leaves by Xanthomonas campestris pv. vesicatoria type three effectors. PLoS One 7(12): e51763. doi: 10.1371/journal.pone.0051763.
  5. Harrison J, Studholme DJ (2014). Draft genome sequence of Xanthomonas axonopodis pathovar vasculorum NCPPB 900. FEMS Microbiol. Lett. 360(2): 113-116. doi: 10.1111/1574-6968.12607.
  6. Priller JP, Reid S, Konein P, Dietrich P, Sonnewald S (2016). The Xanthomonas campestris pv. vesicatoria type-3 effector XopB inhibits plant defence responses by interfering with ROS production. PLoS One 11(7): e0159107. doi: 10.1371/journal.pone.0159107.
  7. Prochaska H, Thieme S, Daum S, Grau J, Schmidtke C, Hallensleben M, John P, Bacia K, Bonas U (2018). A conserved motif promotes HpaB-regulated export of type III effectors from Xanthomonas. Mol. Plant Pathol. 19(11): 2473-2487. doi: 10.1111/mpp.12725.

xopc

  1. Noël L, Thieme F, Nennstiel D, Bonas U (2001). cDNA-AFLP analysis unravels a genome-wide hrpG-regulon in the plant pathogen Xanthomonas campestris pv. vesicatoria. Mol. Microbiol. 41(6): 1271-1281. doi: 10.1046/j.1365-2958.2001.02567.x.
  2. Noël L, Thieme F, Gäbler J, Büttner D, Bonas U (2003). XopC and XopJ, two novel type III effector proteins from Xanthomonas campestris pv. vesicatoria. J Bacteriol. 185(24):7092-102. doi: 10.1128/jb.185.24.7092-7102.2003
  3. Szurek, B, Rossier O, Hause G, Bonas U (2002). Type III-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell. Mol.Microbiol. 46(1):13–23. doi:10.1016/j.jplph.2005.11.011
  4. Büttner D, Lorenz C, Weber E, Bonas U (2006). Targeting of two effector protein classes to the type III secretion system by a HpaC- and HpaB-dependent protein complex from Xanthomonas campestris pv. vesicatoria. Mol Microbiol. 59(2):513-27. doi: 10.1111/j.1365-2958.2005.04924.x
  5. Adlung N, Prochaska H, Thieme S, Banik A, Blüher D, John P, Nagel O, Schulze S, Gantner J, Delker C, Stuttmann J, Bonas U (2006). Non-host Resistance Induced by the Xanthomonas Effector XopQ Is Widespread within the Genus Nicotiana and Functionally Depends on EDS1. Front Plant Sci. 30;7:1796. doi: 10.3389/fpls.2016.01796
  6. Salomon D, Dar D, Sreeramulu S, Sessa G (2011). Expression of Xanthomonas campestris pv. vesicatoria type III effectors in yeast affects cell growth and viability. Mol. Plant Microbe Interact. 24(3): 305-314. doi: 10.1094/MPMI-09-10-0196.

xopd

  1. Rawlings, N. D., Morton, F. R., & Barrett, A. J. (2006). MEROPS: the peptidase database. Nucleic acids research, 34(suppl_1), D270-D272; doi: 10.1093/nar/gkj089
  2. Noel, L., Thieme, F., Nennstiel, D., and Bonas, U. (2002) Two novel type III-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp pathogenicity island. J Bacteriol 184: 1340–1348. DOI: 10.1128/JB.184.5.1340–1348.2002
  3. Chosed, R., Tomchick, D. R., Brautigam, C. A., Mukherjee, S., Negi, V. S., Machius, M., & Orth, K. (2007). Structural analysis of Xanthomonas XopD provides insights into substrate specificity of ubiquitin-like protein proteases. Journal of Biological Chemistry, 282(9), 6773-6782.
  4. Hotson, A., Chosed, R., Shu, H., Orth, K., & Mudgett, M. B. (2003). Xanthomonas type III effector XopD targets SUMO‐conjugated proteins in planta. Molecular microbiology, 50(2), 377-389.
  5. Li, S.J., and Hochstrasser, M. (1999) A new protease required for cell-cycle progression in yeast. Nature 398: 246–251.
  6. Kim, J. G., Taylor, K. W., Hotson, A., Keegan, M., Schmelz, E. A., & Mudgett, M. B. (2008). XopD SUMO protease affects host transcription, promotes pathogen growth, and delays symptom development in Xanthomonas-infected tomato leaves. The Plant Cell, 20(7), 1915-1929.
  7. Ohta, M., Matsui, K., Hiratsu, K., Shinshi, H., & Ohme-Takagi, M. (2001). Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. The Plant Cell, 13(8), 1959-1968.
  8. Kim, J. G., Taylor, K. W., & Mudgett, M. B. (2011). Comparative analysis of the XopD type III secretion (T3S) effector family in plant pathogenic bacteria. Molecular plant pathology, 12(8), 715-730.
  9. Kim JG, Stork W, Mudgett MB (2013) Xanthomonas type III effector XopD desumoylates tomato transcriptionfactor SlERF4 to suppress ethylene responses and promote pathogen
  10. Innes, R. W., A. F. Bent, B. N. Kunkel, S. R. Bisgrove, and B. J. Staskawicz.1993. Molecular analysis of avirulence gene avrRpt2 and identification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes. J. Bacteriol. 175:4859–4869.
  11. Canonne J, Marino D, Jauneau A, Pouzet C, Brière C, et al. (2011) The Xanthomonas type III effector XopD targets the Arabidopsis transcription factor MYB30 to suppress plant defense. Plant Cell 23: 3498–3511. doi: 0.1105/tpc.111.088815 PMID: 21917550
  12. Castaneda A, Reddy JD, El-Yacoubi B, Gabriel DW. Mutagenesis of all eight avr genes in Xanthomonas campestris pv. campestris had no detected effect on pathogenicity, but one avr gene affected race specificity. Molecular Plant-Microbe Interactions. 2005; 18:1306–1317.

xope1

  1. da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira, MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA,Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos SM, Truffi D, Tsai, SM, White FF, Setubal JC, Kitajima JP (2002). Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417(6887):459–463. doi: 10.1038/417459a
  2. Thieme F, Koebnik R, Bekel T, Berger C, Boch J, Büttner D, Caldana C, Gaigalat L, Goesmann A, Kay S, Kirchner O, Lanz C, Linke B, McHardy AC, Meyer F, Mittenhuber G, Nies DH, Niesbach-Klösgen U, Patschkowski T, Rückert C, Rupp O, Schneiker S, Schuster SC, Vorhölter F, Weber E, Pühler A, Bonas U, Bartels D, Kaiser O (2005). Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J. Bacteriol. 187 (21) :7254-7266. doi:10.1128/JB.187.21.7254-7266.2005
  3. Thieme F, Szczesny R, Urban A, Kirchner O, Hause G, Bonas U (2007). New type III effectors from Xanthomonas campestris pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motif. Mol Plant Microbe In. 20(10):1250–61. doi:10.1094/MPMI-20-10-1250
  4. Salomon D, Dar D, Sreeramulu S, Sessa G (2011). Expression of Xanthomonas campestris pv. vesicatoria type III effectors in yeast affects cell growth and viability. Mol Plant Microbe In. 24 (3):305–314. doi:10.1094/MPMI-09-10-0196
  5. Adlung N, Prochaska H, Thieme S, Banik A, Blüher D, John P, Nagel O, Schulze S, Gantner J, Delker C, Stuttmann J, Bonas U(2016). Non-host resistance induced by the Xanthomonas Effector XopQIs Widespread within the Genus Nicotiana and Functionally Depends on EDS1. Front.Plant Sci.7:1796. doi: 10.3389/fpls.2016.01796
  6. Dubrow Z, Sunitha S, Kim JG, Aakre CD, Girija AM, Sobol G, Teper D, Chen YC, Ozbaki-Yagan N, Vance H, Sessa G, Mudgett MB (2018). Tomato 14-3-3 proteins are required for Xv3 disease resistance and interact with a subset of Xanthomonas euvesicatoria effectors. Mol Plant Microbe Interact. 31(12):1301-1311. doi: 10.1094/MPMI-02-18-0048-R
  7. Nimchuk ZL, Fisher EJ, Desvaux D, Chang JH, Dangl JL (2007). The HopX (AvrPphE) family of Pseudomonas syringae type IIIeffectors require a catalytic triad and a novel N-terminal domain forfunction. Mol. Plant-Microbe Interact. 20(4):346-357. doi: 10.1094/MPMI-20-4-0346
  8. Assis RAB, Polloni LC, Patané JSL, Thakur S, Felestrino ÉB, Diaz-Caballero J, Digiampietri LA, Goulart LR, Almeida NF, Nascimento R, Dandekar AM, Zaini PA, Setubal JC, Guttman DS, Moreira LM (2017). Identification and analysis of seven effector protein families with different adaptive and evolutionary histories in plant-associated members of the Xanthomonadaceae. Sci. Rep. 7:16133. doi: 10.1038/s41598-017-16325-1

xope2

  1. da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira, MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA,Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos SM, Truffi D, Tsai, SM, White FF, Setubal JC, Kitajima JP (2002). Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417(6887):459–463. doi: 10.1038/417459a
  2. Li RH, Peng CW, Lin YC, Peng HL, Huang HC (2011). The xopE2 effector protein of Xanthomonas campestris pv. vesicatoria is involved in virulence and in the suppression of the hypersensitive response. Bot. Stud. 52(1):55-72.
  3. Thieme F, Koebnik R, Bekel T, Berger C, Boch J, Büttner D, Caldana C, Gaigalat L, Goesmann A, Kay S, Kirchner O, Lanz C, Linke B, McHardy AC, Meyer F, Mittenhuber G, Nies DH, Niesbach-Klösgen U, Patschkowski T, Rückert C, Rupp O, Schneiker S, Schuster SC, Vorhölter F, Weber E, Pühler A, Bonas U, Bartels D, Kaiser O (2005). Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J. Bacteriol. 187 (21) :7254-7266. doi:10.1128/JB.187.21.7254-7266.2005
  4. Thieme F, Szczesny R, Urban A, Kirchner O, Hause G, Bonas U (2007). New type III effectors from Xanthomonas campestris pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motif. Mol Plant Microbe In. 20(10):1250–61. doi:10.1094/MPMI-20-10-1250
  5. Salomon D, Dar D, Sreeramulu S, Sessa G (2011). Expression of Xanthomonas campestris pv. vesicatoria type III effectors in yeast affects cell growth and viability. Mol Plant Microbe In. 24 (3):305–314. doi:10.1094/MPMI-09-10-0196
  6. Dubrow Z, Sunitha S, Kim JG, Aakre CD, Girija AM, Sobol G, Teper D, Chen YC, Ozbaki-Yagan N, Vance H, Sessa G, Mudgett MB (2018). Tomato 14-3-3 proteins are required for Xv3 disease resistance and interact with a subset of Xanthomonas euvesicatoria effectors. Mol Plant Microbe Interact. 31(12):1301-1311. doi: 10.1094/MPMI-02-18-0048-R
  7. Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple Xanthomonas euvesicatoria type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29(8):651–660. doi: 10.1094/MPMI-07-16-0137-R
  8. Nimchuk ZL, Fisher EJ, Desvaux D, Chang JH, Dangl JL (2007). The HopX (AvrPphE) family of Pseudomonas syringae type IIIeffectors require a catalytic triad and a novel N-terminal domain forfunction. Mol. Plant-Microbe Interact. 20(4):346-357. doi: 10.1094/MPMI-20-4-0346
  9. Assis RAB, Polloni LC, Patané JSL, Thakur S, Felestrino ÉB, Diaz-Caballero J, Digiampietri LA, Goulart LR, Almeida NF, Nascimento R, Dandekar AM, Zaini PA, Setubal JC, Guttman DS, Moreira LM (2017). Identification and analysis of seven effector protein families with different adaptive and evolutionary histories in plant-associated members of the Xanthomonadaceae. Sci. Rep. 7:16133. doi: 10.1038/s41598-017-16325-1

xope3

  1. Dunger G, Garofalo CG, Gottig N, Garavaglia BS, Rosa MC, Farah CS, Orellano EG, Ottado J (2012). Analysis of three Xanthomonas axonopodis pv. citri effector proteins in pathogenicity and their interactions with host plant proteins. Mol Plant Pathol. 13(8):865-76. doi: 10.1111/j.1364-3703.2012.00797.x
  2. da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira, MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA,Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos SM, Truffi D, Tsai, SM, White FF, Setubal JC, Kitajima JP (2002). Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417(6887):459–463. doi: 10.1038/417459a
  3. Guo Y, Figueiredo F, Jones J, Wang N (2011). HrpG and HrpX play global roles in coordinating different virulence traits of Xanthomonas axonopodis pv. citri. Mol Plant Microbe Interact. 24(6):649-61. doi: 10.1094/MPMI-09-10-0209
  4. Nimchuk ZL, Fisher EJ, Desvaux D, Chang JH, Dangl JL (2007). The HopX (AvrPphE) family of Pseudomonas syringae type IIIeffectors require a catalytic triad and a novel N-terminal domain forfunction. Mol. Plant-Microbe Interact. 20(4):346-357. doi: 10.1094/MPMI-20-4-0346

xope4

  1. Moreira LM, Almeida NF Jr, Potnis N, Digiampietri LA, Adi SS, Bortolossi JC, da Silva AC, da Silva AM, de Moraes FE, de Oliveira JC, de Souza RF, Facincani AP, Ferraz AL, Ferro MI, Furlan LR, Gimenez DF, Jones JB, Kitajima EW, Laia ML, Leite RP Jr, Nishiyama MY, Rodrigues Neto J, Nociti LA, Norman DJ, Ostroski EH, Pereira HA Jr, Staskawicz BJ, Tezza RI, Ferro JA, Vinatzer BA, Setubal JC. (2010). Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of Xanthomonas fuscans subsp. aurantifolii. BMC Genomics 11: 238. doi: 10.1186/1471-2164-11-238
  2. Dalio RJD, Magalhães DM, Rodrigues CM, Arena GD, Oliveira TS, Souza-Neto RR, Picchi SC, Martins PMM, Santos PJC, Maximo HJ, Pacheco IS, De Souza AA, Machado MA (2017). PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. Ann Bot. 119(5):749-774. doi: 10.1093/aob/mcw238
  3. Medina CA, Reyes PA, Trujillo CA, Gonzalez JL, Bejarano DA, Montenegro NA, Jacobs JM, Joe A, Restrepo S, Alfano JR, Bernal A (2018). The role of type III effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity. Mol Plant Pathol. 19(3):593-606. doi: 10.1111/mpp.12545
  4. Nimchuk ZL, Fisher EJ, Desvaux D, Chang JH, Dangl JL (2007). The HopX (AvrPphE) family of Pseudomonas syringae type IIIeffectors require a catalytic triad and a novel N-terminal domain forfunction. Mol. Plant-Microbe Interact. 20(4):346-357. doi: 10.1094/MPMI-20-4-0346

xope5

  1. Peng Z, Hu Y, Xie J, Potnis N, Akhunova A, Jones J, Liu Z, White F, Liu S (2016). Long read and single molecule DNA sequencing simplifies genome assembly and TAL effector gene analysis of Xanthomonas translucens. BMC Genomics 17:21. doi: 10.1186/s12864-015-2348-9
  2. Falahi Charkhabi N, Booher NJ, Peng Z, Wang L, Rahimian H, Shams-Bakhsh M, Liu Z, Liu S, White FF, Bogdanove AJ (2017). Complete genome sequencing and targeted mutagenesis reveal virulence vontributions of Tal2 and Tal4b of Xanthomonas translucens pv. undulosa ICMP11055 in bacterial leaf streak of wheat. Front. Microbiol. 10;8:1488. doi: 10.3389/fmicb.2017.01488.
  3. Nimchuk ZL, Fisher EJ, Desvaux D, Chang JH, Dangl JL (2007). The HopX (AvrPphE) family of Pseudomonas syringae type IIIeffectors require a catalytic triad and a novel N-terminal domain forfunction. Mol. Plant-Microbe Interact. 20(4):346-357. doi: 10.1094/MPMI-20-4-0346

xopf

  1. Roden J, Belt B, Ross J, Tachibana T, Vargas J, Mudgett M (2004). A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection. Proc. Natl. Acad. Sci. 101(47): 16624-16629. doi: 10.1073/pnas.0407383101
  2. Büttner D, Lorenz C, Weber E, Bonas U (2006). Targeting of two effector protein classes to the type III secretion system by a HpaC- and HpaB- dependent protein complex from Xanthomonas campestris pv. vesicatoria. Mol. Microbiol. 59(2): 513-527.

xopg

  1. Thieme F, Koebnik R, Bekel T, Berger C, Boch J, Büttner D, Caldana C, Gaigalat L, Goesmann A, Kay S, Kirchner O, Lanz C, Linke B, McHardy AC, Meyer F, Mittenhuber G, Nies DH, Niesbach-Klösgen U, Patschkowski T, Rückert C, Rupp O, Schneiker S, Schuster SC, Vorhölter FJ, Weber E, Pühler A, Bonas U, Bartels D, Kaiser O (2005). Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J Bacteriol. 187 (21) : 7254-7266. doi :  10.1128/JB.187.21.7254-7266.2005
  2. Thieme F (2006). Genombasierte Identifizierung neuer potentieller Virulenzfaktoren von Xanthomonas campestris pv. vesicatoria. PhD dissertation. http:%%//%%sundoc.bibliothek.uni-halle.de/diss-online/06/06H103/prom.pdf
  3. Potnis N,Krasileva K, Chow V, Almeida NF, Patil PB, Ryan RP, Sharlach M, Behlau F, Dow JM, Momol MT, White FF, Preston JF, Vinatzer BA, Koebnik R, Setubal JC, Norman DJ, Staskawicz BJ, Jones JB (2011). Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genomics. 12 (146) : 1-23. doi : 10.1186/1471-2164-12-146
  4. Schulze S, Kay S, Buttner D, Egler M, Eschen-Lippold L, Hause G, Kruger A, Lee J, Muller O, Scheel D, Szczesny R, Thieme F, Bonas U (2012). Analysis of new type III effectors from Xanthomonas uncovers XopB and XopS as suppressors of plant immunity. New Phytologist. 195 : 894-911. doi : **10.1111/j.1469-8137.2012.04210.x**
  5. White FF, Potnis N, Jones JB, Koebnik R (2009). The type III effectors of Xanthomonas. Molecular Plant Pathology.10 (6) : 749-766. doi : 10.1111/j.1364-3703.2009.00590.x
  6. da Silva ACR, Ferro JA, Reinach FC, 1Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, et al (2002). Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature. 417 (23) : 459-463. doi : 10.1038/417459a

xoph

  1. White F F, Potnis N, Jones JB, Koebnik R, White F F (2009). The type III effectors of Xanthomonas. Molecular Plant Pathology. 10: 749–766. doi: 10.1111/J.1364-3703.2009.00590.X
  2. Gurenn D, Thieme, F, Bonas U (2006). Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. Journal of Plant Physiology. 163: 233–255.doi: 10.1016/j.jplph.2005.11.011
  3. Blüher D, Laha D, Thieme S, Hofer A, Eschen-Lippold L, Masch A, Balcke G, Pavlovic I, Nagel O, Schonsky A, Hinkelmann R, Wörner J, Parvin N, Greiner R, Weber S, Tissier A, Schutkowski M, Lee J, Jessen H, Schaaf G, Bonas U (2017). A 1-phytase type III effector interferes with plant hormone signaling. Nature Communications. 8: 1–14. doi: 10.1038/s41467-017-02195-8
  4. Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple Xanthomonas euvesicatoria Type III Effectors Inhibit flg22-Triggered Immunity. Molecular Plant-Microbe Interactions. 29:651–660. doi: 10.1094/mpmi-07-16-0137-r
  5. Potnis N, Minsavage G, Smith J K, Hurlbert J C, Norman D, Rodrigues R, Stall R E, Jones JB (2012). Avirulence Proteins AvrBs7 from Xanthomonas gardneri and AvrBs1.1 from Xanthomonas euvesicatoria Contribute to a Novel Gene-for-Gene Interaction in Pepper. Molecular Plant-Microbe Interactions. 25: 307–320. doi: 10.1094/MPMI-08-11-0205

xopi

  1. Schulze S., Kay S., Buttner D., Egler M., Eschen-Lippold L., Hause G., et al. (2012). Analysis of new type III effectors from Xanthomonas uncovers XopB and XopS as suppressors of plant immunity. New Phytol. 195 894–911 10.1111/j.1469-8137.2012.04210.x https:%%//%%nph.onlinelibrary.wiley.com/doi/epdf/10.1111/j.1469-8137.2012.04210.x
  2. Salomon D, Dar D, Sreeramulu S, Sessa G. Expression of Xanthomonas campestris pv. vesicatoria type III effectors in yeast affects cell growth and viability. Mol Plant Microbe Interact. 2011 Mar;24(3):305-14. doi: 10.1094/MPMI-09-10-0196. https:%%//%%apsjournals.apsnet.org/doi/pdf/10.1094/MPMI-09-10-0196
  3. Teper D, Sunitha S, Martin GB, Sessa G. Five Xanthomonas type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades. Plant Signal Behav. 2015;10(10):e1064573. doi:10.1080/15592324.2015.1064573. https:%%//%%www.ncbi.nlm.nih.gov/pmc/articles/PMC4883825/
  4. Üstün S1, Börnke F2. Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways Front Plant Sci. 2014 Dec 18;5:736. doi: 10.3389/fpls.2014.00736. eCollection 2014. https:%%//%%www.ncbi.nlm.nih.gov/pmc/articles/PMC4270169/#B34
  5. Nagel O, Bonas U. 2018. The Xanthomonas effector protein XopI suppresses the stomatal immunity of tomato. Poster. 6th Xanthomonas Genomics Conference & 2nd Annual EuroXanth Conference. https:%%//%%euroxanth.eu/wp-content/uploads/2018/07/EuroXanth_Second-Annual-Conference-Abstract-Book.pdf

xopj1

  1. Noël L, Thieme F, Nennstiel D, Bonas U (2001). cDNA-AFLP analysis unravels a genome-wide hrpG-regulon in the plant pathogen Xanthomonas campestris pv. vesicatoria. Mol. Microbiol. 41(6): 1271-1281. doi: 10.1046/j.1365-2958.2001.02567.x.
  2. Noël L, Thieme F, Gäbler J, Büttner D, Bonas U (2003). XopC and XopJ, two novel type III effector proteins from Xanthomonas campestris pv. vesicatoria. J. Bacteriol. 185(24): 7092-7102. doi: 10.1128/JB.185.24.7092-7102.2003.
  3. Thieme F, Szczesny R, Urban A, Kirchner O, Hause G, Bonas U (2007). New type III effectors from Xanthomonas campestris pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motif. Mol. Plant-Microbe Interact. 20(10): 1250-1261. doi: 10.1094/MPMI-20-10-1250.
  4. Bartetzko V, Sonnewald S, Vogel F, Hartner K, Stadler R, Hammes UZ, Börnke F (2009). The Xanthomonas campestris pv. vesicatoria type III effector protein XopJ inhibits protein secretion: evidence for interference with the cell wall-associated defense responses. Mol. Plant-Microbe Interact. 22(6): 655-664. doi: 10.1094/MPMI-22-6-0655.
  5. Üstün S, Bartetzko V, Börnke F (2013). The Xanthomonas campestris type III effector XopJ targets the host cell proteasome to suppress salicylic-acid mediated plant defence. PLoS Pathog. 9(6): e1003427. doi: 10.1371/journal.ppat.1003427.
  6. Üstün S, Börnke F (2015). The Xanthomonas campestris type III effector XopJ proteolytically degrades proteasome subunit RPT6. Plant Physiol. 168: 107-119. doi: 10.1104/pp.15.00132.
  7. Üstün S, Bartetzko V, Börnke F (2015). The Xanthomonas effector XopJ triggers a conditional hypersensitive response upon treatment of N. benthamiana leaves with salicylic acid. Front. Plant Sci. 6: 599. doi: 10.3389/fpls.2015.00599.
  8. White F, Potnis N, Jones JB, Koebnik R (2009) The type III effectors of Xanthomonas. Mol. Plant Pathol. 10(6): 749-766. doi: 10.1111/J.1364-3703.2009.00590.X.
  9. Üstün S, Börnke F (2014). Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways. Front. Plant Sci. 5: 736. doi: 10.3389/fpls.2014.00736.
  10. Scheibner F, Hartmann N, Hausner J, Lorenz C, Hoffmeister A-K, Büttner D (2018). The type III secretion chaperone HpaB controls the translocation of effector and noneffector proteins from Xanthomonas campestris pv. vesicatoria. Mol. Plant-Pathogen Interact. 31(1): 61-74. doi: 10.1094/MPMI-06-17-0138-R.

xopj2

  1. Minsavage GV, Dahlbeck D, Whalen MC, Kearny B, Bonas U, Staskawicz BJ, Stall RE (1990). Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria-pepper interactions. Mol. Plant Microbe Interact. 3: 41–47.
  2. Ciesiolka LD, Hwin T, Gearlds JD, Minsavage GV, Saenz R, Bravo M, Handley V, Conover SM, ZhangH, Caporgno J, Phengrasamy NB, Toms AO, Stall RE, Whalen MC (1999). Regulation of expression of avirulence gene avrRxv and identification of a family of host interaction factors by sequence analysis of avrBsT. Mol. Plant Microbe Interact. 12, 35–44. doi: 10.1094/MPMI.1999.12.1.35
  3. Orth K, Xu ZH, Mudgett MB, Bao ZQ, Palmer LE, Bliska JB, Mangel WF, Staskawicz B, Dixon JE (2000). Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290(5496):1594–1597. doi: 10.1126/science.290.5496.1594
  4. Escolar L, Van Den Ackerveken G, Pieplow S, Rossier O, Bonas U (2001). Type III secretion and in planta recognition of the Xanthomonas avirulence proteins AvrBs1 and AvrBsT. Mol. Plant Pathol. 2(5):287-96. doi: 10.1046/j.1464-6722.2001.00077.x.
  5. Cunnac S, Wilson A, Nuwer J, Kirik A, Baranage G, Mudgett MB (2007). A conserved carboxylesterase is a suppressor of AvrBsT-elicited resistance in Arabidopsis. Plant Cell 19: 688–705.
  6. Kirik A, Mudgett MB (2009) SOBER1 phospholipase activity suppresses phosphatidic acid accumulation and plant immunity in response to bacterial effector AvrBsT. Proc. Natl. Acad. Sci. U.S.A. 106: 20532–20537.
  7. Kim NH, Choi HW, Hwang BK (2010). Xanthomonas campestris pv. vesicatoria effector AvrBsT induces cell death in pepper, but suppresses defense responses in tomato. Mol. Plant Microbe Interact. 23(8):1069–1082. doi: 10.1094/MPMI-23-8-1069.
  8. Szczesny R, Büttner D, Escolar L, Schulze S, Seiferth A, Bonas U (2010). Suppression of the AvrBs1-specific hypersensitive response by the YopJ effector homolog AvrBsT from Xanthomonas depends on a SNF1-related kinase. New Phytol. 187:1058–1074. http://dx.doi.org/10.1111/j.1469-8137.2010.03346.x.
  9. Hwang IS, Kim NH, Choi DS, Hwang BK (2012). Overexpression of Xanthomonas campestris pv. vesicatoria effector AvrBsTin Arabidopsis triggers plant cell death, disease and defense responses. Planta 236(4): 1191–1204.
  10. Cheong MS, Kirik A, Kim JG, Frame K, Kirik V, Mudgett MB (2014). AvrBsT acetylates Arabidopsis ACIP1, a protein that associates with microtubules and is required for immunity. PLoS Pathog. 10(2):e1003952. doi: 10.1371/journal.ppat.1003952
  11. Kim NH, Kim DS, Chung EH, Hwang BK (2014). Pepper suppressor of the G2 allele of skp1 interacts with the receptor-like cytoplasmic kinase1 and type III effector AvrBsT and promotes the hypersensitive cell death response in a phosphorylation-dependent manner. Plant Physiol. 165(1):76-91. doi: 10.1104/pp.114.238840.
  12. Kim NH, Hwang BK (2015a). Pepper heat shock protein 70a interacts with the type III effector AvrBsT and triggers plant cell death and immunity. Plant Physiol. 167(2):307-22. doi: 10.1104/pp.114.253898.
  13. Kim NH, Hwang BK (2015b). Pepper aldehyde dehydrogenase CaALDH1 interacts with Xanthomonas effector AvrBsT and promotes effector-triggered cell death and defence responses. J. Exp. Bot. 66(11):3367-80. doi: 10.1093/jxb/erv147.
  14. Schwartz AR, Potnis N, Timilsina S, Wilson M, Patané J, Martins J Jr, Minsavage GV, Dahlbeck D, Akhunova A, Almeida N, Vallad GE, Barak JD, White FF, Miller SA, Ritchie D, Goss E, Bart RS, Setubal JC, Jones JB, Staskawicz BJ (2015). Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Front. Microbiol. 6:535. doi: 10.3389/fmicb.2015.00535
  15. Abrahamian P, Timilsina S, Minsavage GV, Kc S, Goss EM, Jones JB, Vallad GE (2018). The type III effector AvrBsT enhances Xanthomonas perforans fitness in field-grown tomato. Phytopathology 108(12):1355-1362. doi: 10.1094/PHYTO-02-18-0052-R.
  16. Prochaska H, Thieme S, Daum S, Grau J, Schmidtke C, Hallensleben M, John P, Bacia K, Bonas U (2018). A conserved motif promotes HpaB-regulated export of type III effectors from Xanthomonas. Mol. Plant Pathol. 19(11):2473-2487. doi: 10.1111/mpp.12725.

xopj4

  1. Astua‐Monge, G., Minsavage, G.V., Stall, R.E., Vallejos, C.E., Davis, M.J. and Jones, J.B. ( 2000) Xv4avrXv4: a new gene‐for‐gene interaction identified between Xanthomonas campestris pv. vesicatoriarace T3 and wild tomato relative Lycopersicon pennelliiMol. Plant–Microbe Interact. 13, 1346– 1355.
  2. Roden, J., Eardley, L., Hotson, A., Cao, Y. and Mudgett, M.B. ( 2004b) Characterization of the Xanthomonas AvrXv4 effector, a SUMO protease translocated into plant cells. Mol. Plant–Microbe. Interact. 17, 633– 643.
  3. Lavie, M, Shillington, E., Eguiluz, C., Grimsley, N., Boucher, C. (2002) PopP1, a new member of the YopJ/AvrRxv family of type III effector proteins, acts as a host-specificity factor and modulates aggressiveness of Ralstonia solanacearum. Mol. Plant-Microbe Interact. 15:1058– 68.
  4. Timilsina, S., Abrahamian, P., Potnis, N., Minsavage, G.V., White, F.F., Staskawicz, B.J., Jones, J.B., Vallad, G.E., Goss, E.M. (2016) Analysis of sequenced genomes of Xanthomonas perforans identifies candidate targets for resistance breeding in tomato. Phytopathology 106: 1097–1104.

xopj5

  1. Wang S, Fang A, Liu L, et al. The type III effector AvrXccB in Xanthomonas campestris pv. campestris targets putative methyltransferases and suppresses innate immunity in Arabidopsis. Mol Plant Pathol. 2016;18(6):768-782. doi:10.1111/mpp.124352. da Silva ACR, Ferro JA, Reinach FC, et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature. 2002;417(6887):459-463. doi:10.1038/417459a3. Jiang W, Jiang B-L, Xu R-Q, et al. Identification of Six Type III Effector Genes with the PIP Box in Xanthomonas campestris pv. campestris and Five of Them Contribute Individually to Full Pathogenicity. Mol Plant-Microbe Interact. 2009;22(11):1401-1411. doi:10.1094/mpmi-22-11-14014. Rongqi X, Xianzhen L, Hongyu W, et al. Regulation of eight avr by hrpG and hrpX in Xanthomonas campestris pv. campestris and their role in pathogenicity. Prog Nat Sci. 2006;16(12):1288-1294. doi:10.1080/100200706123301435. Thieme F, Szczesny R, Urban A, Kirchner O, Hause G, Bonas U. New Type III Effectors from Xanthomonas campestris pv. vesicatoria Trigger Plant Reactions Dependent on a Conserved N-Myristoylation Motif. Mol Plant-Microbe Interact. 2007;20(10):1250-1261. doi:10.1094/mpmi-20-10-1250

xopk

  1. Qin J, Zhou X, Sun L, Wang K, Yang F, Liao H, Rong W, Yin J, Chen H, Chen X, Zhang J (2018). The Xanthomonas effector XopK harbours E3 ubiquitin-ligase activity that is required for virulence. New Phytol. 220: 219–231. doi: 10.1111/nph.15287.
  2. Song C, Yang B (2010). Mutagenesis of 18 type III effectors reveals virulence function of XopZ (PXO99) in Xanthomonas oryzae pv. oryzae. Mol. Plant–Microbe Interact. 23: 893–902. doi: 10.1094/MPMI-23-7-0893.
  3. Mutka AM, Fentress SJ, Sher SW, Berry JC, Pretz C, Nusinow DA, Bart R (2016). Quantitative, Image-Based Phenotyping Methods Provide Insight into Spatial and Temporal Dimensions of Plant Disease. Plant Physiol. 172: 650–660. doi: 10.1104/pp.16.00984.
  4. Schulze S, Kay S, Büttner D, Egler M, Eschen-Lippold L, Hause G, Krüger A, Lee J, Müller O, Scheel D, Szczesny R, Thieme F, Bonas U (2012). Analysis of new type III effectors from Xanthomonas uncovers XopB and XopS as suppressors of plant immunity. New Phytol. 195: 894–911. doi: 10.1111/j.1469-8137.2012.04210.x.
  5. Furutani A, Nakayama T, Ochiai H, Kaku H, Kubo Y, Tsuge S (2006). Identification of novel HrpXo regulons preceded by two cis-acting elements, a plant-inducible promoter box and a -10 box-like sequence, from the genome database of Xanthomonas oryzae pv. oryzae. FEMS Microbiol. Lett. 259: 133–141. doi: 10.1111/j.1574-6968.2006.00265.x

xopl

  1. Singer AU, Schulze S, Skarina T, Xu X, Cui H, et al. (2013) A pathogen type III effector with a novel E3 ubiquitin ligase architecture. PLOS Pathogens 9(1): e1003121.https://doi.org/10.1371/journal.ppat.1003121
  2. Xia Yan, Jun Tao, Hong-Li Luo, Lei-Tao Tan, Wei Rong, Hui-Ping Li, Chao-Zu He (2019) A type III effector XopLXcc8004 is vital for Xanthomonas campestris pathovar campestris to regulate plant immunity. Research in Microbiology, Volume 170, Issue 3: 138-146,
  3. Jiang W, Jiang BL, Xu RQ, Huang JD, Wei HY, Jiang GF, et al. (2009) Identification of six type III effector genes with the PIP Box in Xanthomonas campestris pv campestris and five of them contribute individually to full pathogenicity. Mol Plant-Microbe Interact 22:1401e11.
  4. Soni M, Mondal KK. (2017) Xanthomonas axonopodis pv. punicae employs XopL effector to suppress pomegranate immunity. J Integr Plant Biol;29. https://doi.org/10.1111/jipb.12615.
  5. Georgy Popov, Malou Fraiture, Frederic Brunner, and Guido Sessa (2016), Multiple Xanthomonas euvesicatoria Type III effectors inhibit flg22-triggered immunity. Molecular Plant-Microbe Interactions 29:8, 651-660 
  6. Erickson, J. L., Adlung, N., Lampe, C., Bonas, U. and Schattat, M. H. (2018), The Xanthomonas effector XopL uncovers the role of microtubules in stromule extension and dynamics in Nicotiana benthamiana. Plant J, 93: 856-870. doi:10.1111/tpj.13813

xopn

  1. Roden, J. A., Belt, B., Ross, J. B., Tachibana, T., Vargas, J., & Mudgett, M. B. (2004). A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection. Proceedings of the National Academy of Sciences of the United States of America, 101(47), 16624-16629. doi: https:%%//%%doi.org/10.1073/pnas.0407383101
  2. Cheong, H., Kim, C. Y., Jeon, J. S., Lee, B. M., Sun Moon, J., & Hwang, I. (2013). Xanthomonas oryzae pv. oryzae type III effector XopN targets OsVOZ2 and a putative thiamine synthase as a virulence factor in rice. PloS one, 8(9), e73346. doi:10.1371/journal.pone.0073346
  3. Jiang, B., He, Y., Cen, W., Wei, H., Jiang, G., Jiang, W., Hang, X., Feng, J., Lu, G., Tang, D., & Tang, J. (2008). The type III secretion effector XopXccN of Xanthomonas campestris pv. campestris is required for full virulence. Research in microbiology, 159 3, 216-20 .doi: https:%%//%%doi.org/10.1016/j.resmic.2007.12.004
  4. Kim, J. G., Li, X., Roden, J. A., Taylor, K. W., Aakre, C. D., Su, B., Landone, S., Kirik, A., Chen, Y., Baranage, G.,Martin, B. G., Mudgett B. M., McLane, H. (2009). Xanthomonas T3S effector XopN suppresses PAMP-triggered immunity and interacts with a tomato atypical receptor-like kinase and TFT1. The Plant Cell, 21(4), 1305-1323. doi: 10.1105/tpc.108.063123

xopo

  1. Roden, J. A. et al. A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection. Proc Natl Acad Sci U S A 101, 16624-16629, doi:10.1073/pnas.0407383101 (2004).
  2. Koebnik, R., Kruger, A., Thieme, F., Urban, A. & Bonas, U. Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. J Bacteriol 188, 7652-7660, doi:10.1128/JB.00795-06 (2006).
  3. Teper, D., Sunitha, S., Martin, G. B. & Sessa, G. Five Xanthomonas type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades. Plant Signal Behav 10, e1064573, doi:10.1080/15592324.2015.1064573 (2015)
  4. Hajri, A. et al. Multilocus sequence analysis and type III effector repertoire mining provide new insights into the evolutionary history and virulence of Xanthomonas oryzae. Mol Plant Pathol 13, 288-302, doi:10.1111/j.1364-3703.2011.00745.x (2012).
  5. Popov, G., Fraiture, M., Brunner, F. & Sessa, G. Multiple Xanthomonas euvesicatoria Type III Effectors Inhibit flg22-Triggered Immunity. Mol Plant Microbe Interact 29, 651-660, doi:10.1094/MPMI-07-16-0137-R (2016).
  6. Barak, J. D. et al. Whole-Genome Sequences of Xanthomonas euvesicatoria Strains Clarify Taxonomy and Reveal a Stepwise Erosion of Type 3 Effectors. Front Plant Sci 7, 1805, doi:10.3389/fpls.2016.01805 (2016).
  7. Dubrow, Z. et al. Tomato 14-3-3 Proteins Are Required for Xv3 Disease Resistance and Interact with a Subset of Xanthomonas euvesicatoria Effectors. Mol Plant Microbe Interact 31, 1301-1311, doi:10.1094/MPMI-02-18-0048-R (2018).

xopp

  1. Roden, J-A., Belt, B., Ross J. B., Tachibana, Th., Vargas, J., Mudgett, M. B. (2004). A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection. PNAS, 101(47):16624-16629. doi􏰅10.1073􏰅pnas.0407383101
  2. Ishikawa K., Yamaguchi K., Sakamoto K., Yoshimura S., Inoue K., Tsuge S., et al. (2014). Bacterial effector modulation of host E3 ligase activity suppresses PAMP-triggered immunity in rice. Nat. Commun. 5:5430 doi: 10.1038/ncomms6430
  3. Furutani, A., Takaoka, M., Sanada, H., Noguchi Y., Oku, T., Tsuno, K., Ochiai, H., Tsuge, S. (2009). Identification of novel type III secretion effectors in Xanthomonas oryzae pv. oryzae. Mol. Plant Microbe Interact. 22, 96–106 (2009). doi:10.1094 / MPMI -22-1-0096

xopq

  1. Adlung N, Prochaska H, Thieme S, Banik A, Blüher D, John P, Nagel O, Schulze S, Gantner J, Delker C, Stuttmann J and Bonas U. (2016) Non-host Resistance Induced by the Xanthomonas Effector XopQ Is Widespread within the Genus Nicotiana and Functionally Depends on EDS1. Plant Sci., https://doi.org/10.3389/fpls.2016.01796
  2. Adlung N, Bonas U (2017) Dissecting virulence function from recognition: cell death suppression in Nicotiana benthamiana by XopQ/HopQ1‐family effectors relies on EDS1‐dependent immunity. The Plant Journal - Wiley Online LibraryNorman Adlung.
  3. Büttner D, Bonas U (2010) Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiology Reviews, Volume 34, Issue 2, March 2010, Pages 107–133, https://doi.org/10.1111/j.1574-6976.2009.00192.x
  4. Deb S, Gupta MK, Patel HK, Sonti RV. (2019). Xanthomonas oryzae pv. oryzae XopQ protein suppresses rice immune responses through interaction with two 14-3-3 proteins but its phospho-null mutant induces rice immune responses and interacts with another 14-3-3 protein. Mol Plant Pathol. 20(7):976-989. doi: 10.1111/mpp.12807.
  5. Furutani A,Takaoka M, Sanada H, Noguchi Y, Oku T, Tsuno K, Ochiai H, Tsuge S (2009) Identification of Novel Type III Secretion Effectors in Xanthomonas oryzae pv. oryzae. MPMI Vol. 22, No. 1, 2009, pp. 96–106. doi:10.1094/MPMI -22-1-0096
  6. Hajri A, Brin C, Hunault G, Lardeux F, Lemaire C, et al. (2009) Correction: A «Repertoire for Repertoire» Hypothesis: Repertoires of Type Three Effectors are Candidate Determinants of Host Specificity in Xanthomonas. PLOS ONE 4(10): 10.1371/annotation/92d243d0-22b2-44da-9618-83b4aa252724
  7. Jiang W, Jiang B, Xu R, Huang J, Wei H, Jiang GF, Cen WJ, Liu J, Ge YY, Li GH, Su LL, Hang XH, Tang DJ, Lu GT, Feng JX, He YQ, Tang JL.(2009) Identification of six type III effector genes with the PIP box in Xanthomonas campestris pv. campestris and five of them contribute individually to full pathogenicity. Mol Plant–Microbe Interact 2009; 22:14011411.
  8. Roden JA, Belt B, Ross JB, Tachibana T, Vargas J et al. (2004) A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection. Proc Natl Acad Sci U S A 101: 16624-16629. doi:https://doi.org/10.1073/pnas.0407383101
  9. Sinha D, Gupta MK, Patel HK, Ranjan A, Sonti RV. 2014. Cell Wall Degrading Enzyme Induced Rice Innate Immune Responses Are Suppressed by the Type 3 Secretion System Effectors XopN, XopQ, XopX and XopZ of Xanthomonas oryzae pv. oryzae. 2013 PLoS ONE 8(9): e75867. https:%%//%%doi.org/10.1371/journal.pone.0075867
  10. Teper D, SalomonD, Sunitha S, Kim JG, Mudgett MB, Sessa G. (2014). Xanthomonas euvesicatoria type III effectorXopQ interactswith tomato and pepper 14-3-3 isoforms to suppress effector-triggered immunity. Plant J. 77:297–309
  11. Yu S, Hwang I, Rhee S. (2014) The crystal structure of type III effector protein XopQ from Xanthomonas oryzae complexed with adenosine diphosphate ribose. Proteins https://doi.org/10.1002/prot.24656

xopr

  1. Furutani, A., et al., Identification of novel HrpXo regulons preceded by two cis-acting elements, a plant-inducible promoter box and a −10 box-like sequence, from the genome database of Xanthomonas oryzae pv. oryzae. FEMS Microbiol Lett, 2006. 259(1): p. 133-141 DOI:10.1111/j.1574-6968.2006.00265.x
  2. Furutani, A., et al., Identification of Novel Type III Secretion Effectors in Xanthomonas oryzae pv. oryzae. Molecular Plant-Microbe Interactions, 2009. 22(1): p. 96-106 DOI:10.1094/mpmi-22-1-0096
  3. WHITE, F.F., et al., The type III effectors of Xanthomonas. Mol Plant Pathol, 2009. 10(6): p. 749-766 DOI:10.1111/j.1364-3703.2009.00590.x
  4. Verma, G., et al., XopR T3SS-effector of Xanthomonas oryzae pv. oryzae suppresses cell death-mediated plant defense response during bacterial blight development in rice. 3 Biotech, 2019. 9(7): p. 272 DOI:10.1007/s13205-019-1802-9
  5. Kametani-Ikawa, Y., et al., An H-NS-like protein involved in the negative regulation of hrp genes in Xanthomonas oryzae pv. oryzae. FEMS Microbiol Lett, 2011. 319(1): p. 58-64 DOI:10.1111/j.1574-6968.2011.02266.x
  6. Akimoto-Tomiyama, C., et al., XopR, a Type III Effector Secreted by Xanthomonas oryzae pv. oryzae, Suppresses Microbe-Associated Molecular Pattern-Triggered Immunity in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 2012. 25(4): p. 505-514 DOI:10.1094/mpmi-06-11-0167
  7. Medina, C.A., et al., The role of type III effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity. Mol Plant Pathol, 2018. 19(3): p. 593-606 DOI:10.1111/mpp.12545
  8. Verma, G., M. Sharma, and K.K. Mondal, XopR TTSS-effector regulates <i>in planta</i> growth, virulence of Indian strain of <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> via suppressing reactive oxygen species production and cell wall-associated rice immune responses during blight induction. Functional Plant Biology, 2018. 45(5): p. 561-574 DOI:https://doi.org/10.1071/FP17147
  9. Wang, S., et al., A Xanthomonas oryzae pv. oryzae effector, XopR, associates with receptor-like cytoplasmic kinases and suppresses PAMP-triggered stomatal closure. Science China Life Sciences, 2016. 59(9): p. 897-905 DOI:10.1007/s11427-016-5106-6

xops

  1. Schulze S, Kay S, Büttner D, Egler M, Eschen-Lippold L, Hause G, Krüger A, Lee J, Müller O, Scheel D, Szczesny R, Thieme F, Bonas U (2012). Analysis of new type III effectors from Xanthomonas uncovers XopB and XopS as suppressors of plant immunity. New Phytol. 195(4): 894-911. doi: 10.1111/j.1469-8137.2012.04210.x.
  2. Barak, J.G., Vancheva, T, Lefeuvre, P., Jones, J. B., Timilsina, S., Minsavage, G.V, Vallad, G.E. and Koebnik, R Whole-Genome Sequences of Xanthomonas euvesicatoria Strains Clarify Taxonomy and Reveal a Stepwise Erosion of Type 3 Effectors FEMS Microbiol. Lett. 360(2): 113-116. doi: 10.1111/1574-6968.12607.

xopx

  1. Lindeberg, M., Cunnac, S., Collmer, A. (2012) Pseudomonas syringae type III effector repertoires: last words in endless arguments. Trends Microbiol. 20, 199–208, Doi: 10.1016/j.tim.2012.01.003.
  2. Metz, M., Dahlbeck, D., Morales, C.Q., Sady, B.A., Clark, E.T., Staskawicz, B.J. (2005) The conserved Xanthomonas campestris pv. vesicatoria effector protein XopX is a virulence factor and suppresses host defense in Nicotiana benthamiana: XopX effector protein suppresses plant host defense. Plant J. 41, 801–14, Doi: 10.1111/j.1365-313X.2005.02338.x.
  3. Salomon, D., Dar, D., Sreeramulu, S., Sessa, G. (2011) Expression of Xanthomonas campestris pv. vesicatoria type III effectors in yeast affects cell growth and viability. Mol. Plant. Microbe Interact. 24, 305–14, Doi: 10.1094/MPMI-09-10-0196.
  4. Sinha, D., Gupta, M.K., Patel, H.K., Ranjan, A., Sonti, R.V. (2013) Cell wall degrading enzyme induced rice innate immune responses are suppressed by the type 3 secretion system effectors XopN, XopQ, XopX and XopZ of Xanthomonas oryzae pv. oryzae. PLOS ONE 8, e75867, Doi: 10.1371/journal.pone.0075867.
  5. Stork, W., Kim, J.-G., Mudgett, M.B. (2015) Functional analysis of plant defense suppression and activation by the Xanthomonas core type III effector XopX. Mol. Plant. Microbe Interact. 28, 180–94, Doi: 10.1094/MPMI-09-14-0263-R.

xopy

  1. Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli SV, Patil PB, Van Sluys MA, Ryan RP, Meyer DF, Han SW, Aparna G, Rajaram M, Delcher AL, Phillippy AM, Puiu D, Schatz MC, Shumway M, Sommer DD, Trapnell C, Benahmed F, Dimitrov G, Madupu R, Radune D, Sullivan S, Jha G, Ishihara H, Lee SW, Pandey A, Sharma V, Sriariyanun M, Szurek B, Vera-Cruz CM, Dorman KS, Ronald PC, Verdier V, Dow JM, Sonti RV, Tsuge S, Brendel VP, Rabinowicz PD, Leach JE, White FF, Salzberg SL (2011). Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J Bacteriol. 193(19): 5450-5464. doi: 10.1128/JB.05262-11
  2. Falahi Charkhabi N, Booher NJ, Peng Z, Wang L, Rahimian H, Shams-Bakhsh M, Liu Z, Liu S, White FF, Bogdanove AJ (2017). Complete genome sequencing and targeted mutagenesis reveal virulence contributions of Tal2 and Tal4b of Xanthomonas translucens pv. undulosa ICMP11055 in bacterial leaf streak of wheat. Front Microbiol. 8:1488. doi: 10.3389/fmicb
  3. Yamaguchi K, Nakamura Y, Ishikawa K, Yoshimura Y, Tsuge S, Kawasaki T (2013). Suppression of rice immunity by Xanthomonas oryzae type III effector Xoo2875. Biosci. Biotechnol. Biochem. 77(4): 796–801. doi: 10.1271/bbb.120929.
  4. Yamaguchi K, Yamada K, Ishikawa K, Yoshimura S, Hayashi N, Uchihashi K, Ishihama N, Kishi-Kaboshi M, Takahashi A, Tsuge S, Ochiai H, Tada Y, Shimamoto K, Yoshioka H, Kawasaki T (2013). A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity. Cell Host Microbe 13(3):347–357. doi: 10.1016/j.chom.2013.02.007.
  5. White FF, Potnis N, Jones JB, Koebnik R (2009). The type III effectors of Xanthomonas. Mol Plant Pathol 10(6):749–766. doi: 10.1111/j.1364-3703.2009.00590.x.

xopz

  1. Ryan RP, Koebnik R, Szurek B, Boureau T, Bernal A, Bogdanove A, Dow JM (2009) Passing GO (gene ontology) in plant pathogen biology: a report from the Xanthomonas Genomics Conference. Cellular Microbiology 11: 1689–1696
  2. Sinha D, Gupta MK, Patel HK, Ranjan A, Sonti RV (2013) Cell Wall Degrading Enzyme Induced Rice Innate Immune Responses Are Suppressed by the Type 3 Secretion System Effectors XopN, XopQ, XopX and XopZ of Xanthomonas oryzae pv. oryzae. PLoS ONE 8: e75867
  3. Song C, Yang B (2010) Mutagenesis of 18 Type III Effectors Reveals Virulence Function of XopZ PXO99 in Xanthomonas oryzae pv. oryzae. MPMI 23: 893–902
  4. Zhou H, Yang B (2018) Non-TAL Effectors From Xanthomonas oryzae pv. oryzae Suppress Peptidoglycan-Triggered MAPK Activation in Rice. Frontiers in Plant Science 9: 9
  5. Zhou J Host target genes of the Xanthomonas oryzae pv. oryzae type III effectors for bacterial blight in rice. 193

banana

  1. Tripathi L, Tripathi JN, Shah T, Muiruri KS, Katari M: Molecular Basis of Disease Resistance in Banana Progenitor Musa balbisiana against Xanthomonas campestris pv. musacearum. Scientific reports 2019, 9(1):7007.
  2. D’Hont A, Denoeud F, Aury J-M, Baurens F-C, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M: The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 2012, 488(7410):213.
  3. Chen C-h, Lin H-j, Ger M-j, Chow D, Feng T-y: cDNA cloning and characterization of a plant protein that may be associated with the harpinPSS-mediated hypersensitive response. Plant molecular biology 2000, 43(4):429-438.
  4. Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, Cheng J, Zhao S, Xu M, Luo Y: Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proceedings of the National Academy of Sciences 2014, 111(14):5135-5140.4. Tripathi L, Tripathi JN, Kiggundu A, Korie S, Shotkoski F, Tushemereirwe WK: Field trial of Xanthomonas wilt disease-resistant bananas in East Africa. Nature Biotechnology 2014, 32(9):868.Pathogen: Xanthomonas campestris pv. musacearum
  5. Namukwaya B, Tripathi L, Tripathi J, Arinaitwe G, Mukasa S, Tushemereirwe W: Transgenic banana expressing Pflp gene confers enhanced resistance to Xanthomonas wilt disease. Transgenic research 2012, 21(4):855-865.
  6. Dayakar BV, Lin H-J, Chen C-H, Ger M-J, Lee B-H, Pai C-H, Chow D, Huang H-E, Hwang S-Y, Chung M-C: Ferredoxin from sweet pepper (Capsicum annuum L.) intensifying harpin pss-mediated hypersensitive response shows an enhanced production of active oxygen species (AOS). Plant molecular biology 2003, 51(6):913-924.
  7. Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, Cheng J, Zhao S, Xu M, Luo Y: Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proceedings of the National Academy of Sciences 2014, 111(14):5135-5140.
  8. Jin Y, Goodman RE, Tetteh AO, Lu M, Tripathi L: Bioinformatics analysis to assess potential risks of allergenicity and toxicity of HRAP and PFLP proteins in genetically modified bananas resistant to Xanthomonas wilt disease. Food and Chemical Toxicology 2017, 109:81-89.
  9. Tripathi L, Mwaka H, Tripathi JN, Tushemereirwe WK: Expression of sweet pepper Hrap gene in banana enhances resistance to Xanthomonas campestris pv. musacearum. Molecular Plant Pathology 2010, 11(6):721-731.
  10. Ssekiwoko F, Kiggundu A, Tushemereirwe W, Karamura E, Kunert K: Xanthomonas vasicola pv. musacearum down-regulates selected defense genes during its interaction with both resistant and susceptible banana. Physiological and molecular plant pathology 2015, 90:21-26.
  11. Smith J, Jones D, Karamura E, Blomme G, Turyagyenda F: An analysis of the risk from Xanthomonas campestris pv. musacearum to banana cultivation in Eastern, Central and Southern Africa. Bioversity International, Montpellier, France ISBN 2008:978-972.
  12. Biruma M, Pillay M, Tripathi L, Blomme G, Abele S, Mwangi M, Bandyopadhyay R, Muchunguzi P, Kassim S, Nyine M et al: Banana Xanthomonas wilt: A review of the disease, management strategies and future research directions. African Journal of Biotechnology (ISSN: 1684-5315) Vol 6 Num 8 2007, 6.
  13. Nakato G, Christelová P, Were E, Nyine M, Coutinho TA, Doležel J, Uwimana B, Swennen R, Mahuku G: Sources of resistance in Musa to Xanthomonas campestris pv. musacearum, the causal agent of banana xanthomonas wilt. Plant pathology 2019, 68(1):49-59.
  14. Endah R, Coutinho T, Chikwamba R: Xanthomonas campestris pv. musacearum induces sequential expression of two NPR-1 like genes in banana. Aspects of Applied Biology 2009(96):325-330.

bean

  1. Zapata M, Beaver J S, Porch T G (2011). Dominant gene for common bean resistance to common bacterial blight caused by Xanthomonas axonopodis pv. phaseoli. Euphytica, 179(3): 373-382. doi: 10.1007/s10681-010-0313-x.
  2. Singh S P, Miklas P N (2015). Breeding common bean for resistance to common blight: A review. Crop Science, 55(3): 971-984. doi: 10.2135/cropsci2014.07.0502.

cassava

  1. Cohn, M., Bart, R.S., Shybut, M. et al. Molecular Plant-Microbe Interactions (2014) 27: 1186-1198
  2. Cohn, M., Morbitzer, R., Lahaye, T., Staskawicz, J. Molecular Plant Pathology (2016) 17: 875-889
  3. Diaz-Tatis, P.A., Herrera-Corzo, M., Ochoa Cabezas, J.C. et al. Planta (2018) 247: 1031-1042
  4. Diaz-Tatis, P.A., Ochoa, J.C., Garcia, L. et al. Tropical Plant Pathology (2019) 44: 225-237
  5. Li, K., Xion, X., Zhu, S., et al. Functional Plant Biology (2017) 45: 658-667
  6. Li, X., Fan, S., Hu, W., et al. Frontiers in Plant Science (2017) https://doi.org/10.3389/fpls.2017.02110
  7. Li, X., Liu, W., Li, B., et al. Plant Phiysiology and Biochemistry (2018) 124: 70-76
  8. Pereira, L.F., Goodwin, P.H., Erickson, L. Brazilian Archives of Biology and Technology (2003) 46: 149-154
  9. Soto Sedana, J.C., Mora Moreno, R.E., Mathew, B., et al. Frontiers in Plant Science (2017) https://doi.org/10.3389/fpls.2017.01169
  10. Wei, Y., Chang, Y., Zeng, H., et. al. Journal of Pineal Research (2018) 64: e12454
  11. Wei, Y., Liu, G., Chang, Y., Molecular Plant Pathology (2018) 19: 2209-2220
  12. Yan, Y., Wang, P., He, C., Shi, H., Biochemical and Biophysical Research Communications (2017) 494: 20-26
  13. Zeng, H, Xie, Y., Liu, G., et al. Plant Molecular Biology (2018) 97: 201-214

citrus

  1. Shi Q. Febres V.J., Jones J.B., Moore G.A. (2016). A survey for FLS2 genes from multiple citrus species identifies candidates for enhancing disease resistance to Xanthomonas citri ssp. citri. Hortic. Res. 3: 16022. doi: 10.1038/hortres.2016.22
  2. Chen X, Barnaby J.Y., Sreedharan A, Huang X, Orbovic V. Grosser J.W., Wang N, Dong X, Song W (2013). Over-expression of the citrus gene CtNH1 confers resistance to bacterial canker disease. PHYSIOL MOL PLANT P 84(1): 115-122. doi: 10.1016/j.pmpp.2013.07.002
  3. Cernadas R.A., Camillo L.R., Benedetti C.E. (2008) Transcriptional analysis of the sweet orange interaction with the citrus canker pathogens Xanthomonas axonopodis pv. citri and Xanthomonas axonopodis pv. aurantifolii. Mol. Plant Pathol 9(5): 609-631. doi: 10.1111/J.1364-3703.2008.00486.X
  4. Shimo H.M., Terassi C, Silva C.C.L., Zanella J.L., Mercaldi G.F., Rocco S.A., Benedetti C.E. (2019). Role of the Citrus sinensis RNA deadenylase CsCAF1 in citrus canker resistance. Mol. Plant Pathol 20(8): 1105-1118. doi: 10.1111/mpp.12815
  5. Soprano A.S., Abe V.Y., Smetana J.H.C., Benedetti C.E. (2013). Citrus MAF1, a repressor of RNA polymerase III, binds the Xanthomonas citri canker elicitor PthA4 and suppresses citrus canker development. Plant Physiol 163(1): 232-242. doi: 10.1104/pp.113.224642

cotton

  1. Knight, R. L., Knight, R. L., Clouston, T. W., & Clouston, T. W. (1939). The genetics of blackarm resistance-I. Factors B1 and B2. Journal of Genetics, 38(01-02). Delannoy, E., Lyon, B. R., Marmey, P., Jalloul, A., Daniel, J. F., Montillet, J. L., … & Nicole, M. (2005). Resistance of cotton towards Xanthomonas campestris pv. malvacearum. Annu. Rev. Phytopathol., 43, 63-82.
  2. Jalloul, A., Sayegh, M., Champion, A., & Nicole, M. (2015). Bacterial blight of cotton. Phytopathologia Mediterranea, 3-20.
  3. Delannoy, E., Lyon, B. R., Marmey, P., Jalloul, A., Daniel, J. F., Montillet, J. L., … & Nicole, M. (2005). Resistance of cotton towards Xanthomonas campestris pv. malvacearum. Annu. Rev. Phytopathol., 43, 63-82.
  4. Jalloul, A., Sayegh, M., Champion, A., & Nicole, M. (2015). Bacterial blight of cotton. Phytopathologia Mediterranea, 3-20.
  5. Wright, R. J., Thaxton, P. M., El-Zik, K. M., & Paterson, A. H. (1998). D-subgenome bias of Xcm resistance genes in tetraploid Gossypium (cotton) suggests that polyploid formation has created novel avenues for evolution. Genetics, 149(4), 1987-1996.
  6. Delannoy, E., Lyon, B. R., Marmey, P., Jalloul, A., Daniel, J. F., Montillet, J. L., … & Nicole, M. (2005). Resistance of cotton towards Xanthomonas campestris pv. malvacearum. Annu. Rev. Phytopathol., 43, 63-82.
  7. Saunders, J. H., & Innes, N. L. (1963). The genetics of bacterial blight resistance in cotton Further evidence on the gene B 6m. Genetics Research, 4(3), 382-388.
  8. Wallace, T. P., & El-Zik, K. M. (1989). Inheritance of resistance in three cotton cultivars to the HV1 isolate of bacterial blight. Crop science, 29(5), 1114-1119.
  9. Delannoy, E., Lyon, B. R., Marmey, P., Jalloul, A., Daniel, J. F., Montillet, J. L., … & Nicole, M. (2005). Resistance of cotton towards Xanthomonas campestris pv. malvacearum. Annu. Rev. Phytopathol., 43, 63-82.
  10. Xiao, J., Fang, D. D., Bhatti, M., Hendrix, B., & Cantrell, R. (2010). A SNP haplotype associated with a gene resistant to Xanthomonas axonopodis pv. malvacearum in upland cotton (Gossypium hirsutum L.). Molecular breeding, 25(4), 593-602.
  11. Delannoy, E., Lyon, B. R., Marmey, P., Jalloul, A., Daniel, J. F., Montillet, J. L., … & Nicole, M. (2005). Resistance of cotton towards Xanthomonas campestris pv. malvacearum. Annu. Rev. Phytopathol.43, 63-82.‏
  12. Essenberg, M., Bayles, M. B., Samad, R. A., Hall, J. A., Brinkerhoff, L. A., & Verhalen, L. M. (2002). Four near-isogenic lines of cotton with different genes for bacterial blight resistance. Phytopathology92(12), 1323-1328.‏
  13. Huang, X., Zhai, J., Luo, Y., & Rudolph, K. (2008). Identification of a highly virulent strain of Xanthomonas axonopodis pv. malvacearum. European journal of plant pathology122(4), 461-469.‏
  14. Follin, J. C. (1983). Races de# Xanthomonas campestris# pv. malvacearum (Smith) Dye en Afrique de l'Ouest et en Afrique Centrale. Coton et Fibres tropicales38(3), 274-279.‏
  15. Akello, B., & Hillocks, R. J. (2002). Distribution and races of Xanthomonas axonopodis pv. malvacearum on cotton (Gossypium hirsutum) in Uganda. Journal of Phytopathology150(2), 65-69.‏
  16. Hunter, R. E., Brinkerhoff, L. A., & Bird, L. S. (1968). Development of a set of Upland cotton lines for differentiating races of Xanthomonas malvacearum. Phytopathology58(6), 830-+.‏
  17. De, R. F., Yang, Y. I. N. O. N. G., & Gabriel, D. W. (1993). Gene-for-genes interactions between cotton R genes and Xanthomonas campestris pv. malvacearum avr genes. Molecular plant-microbe interactions: MPMI6(2), 225-23
  18. de Feyter, R., McFadden, H., & Dennis, L. (1998). Five avirulence genes from Xanthomonas campestris pv. malvacearum cause genotype-specific cell death when expressed transiently in cotton. Molecular plant-microbe interactions11(7), 698-701
  19. Essenberg, M., Bayles, M. B., Samad, R. A., Hall, J. A., Brinkerhoff, L. A., & Verhalen, L. M. (2002). Four near-isogenic lines of cotton with different genes for bacterial blight resistance. Phytopathology92(12), 1323-1328.‏
  20. Swarup, S., Yang, Y., Kingsley, M. T., & Gabriel, D. W. (1992). An Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on nonhosts. Mol Plant Microbe Interact5(3), 204-213.‏

fagales

  1. Frutos D (2010). Bacterial diseases of walnut and hazelnut and genetic resources. Journal of Plant Pathology, S79-S85. doi : 10.2307/41998759
  2. Lamichhane J R (2014). Xanthomonas arboricola diseases of stone fruit, almond, and walnut trees: progress toward understanding and management. Plant disease 98(12): 1600-1610. doi : 10.1094/PDIS-08-14-0831-FE
  3. Jiang S, Han S, He D, Cao G, Zhang F, Wan X (2019). Evaluating Walnut (Juglans spp.) for resistance to walnut blight and comparisons between artificial inoculation assays and field studies. Australasian Plant Pathology 48(3): 221-231. doi : 10.1007/s13313-019-0621-0
  4. Lamichhane JR, Varvaro L (2014). Xanthomonas arboricola disease of hazelnut: current status and future perspectives for its management. Plant pathology, 63(2): 243-254. doi: 10.1111/ppa.12152

mango

  1. Zhou X., Liu Y., Huang J., Liu Q., Sun J., Cai X., Tang P., Liu W., Miao W. (2019). High temperatures affect the hypersensitive reaction, disease resistance and gene expression induced by a novel harpin HpaG-Xcm. Scientific Report, doi.org/10.1038/s41598-018-37886-9.
  2. Wei, Z. M., Laby R.J., Zumoff C.H., Bauer D.W., He S.Y., Collmer A., Beer S.V. (1992). Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science. 257, 85–88.

pepper

  1. Cook, A. A., & Guevara, Y. G. (1984). Hypersensitivity in Capsicum chacoense to race 1 of the bacterial spot pathogen of pepper. Plant Disease 68(4):329–330.
  2. Cook, A. A., & Stall, R. E. (1963). Inheritance of resistance in pepper to bacterial spot. Phytopathology, 53(9): 1060–1062.
  3. Kim, B. S., & Hartmann, R. W. (1985). Inheritance of a gene (Bs3) conferring hypersensitive resistance to Xanthomonas campestris pv. vesicatoria in pepper (Capsicum annuum). Plant disease 69(3): 233-235.
  4. Stall, R. E., Jones, J. B., & Minsavage, G. V. (2009). Durability of resistance in tomato and pepper to xanthomonads causing bacterial spot. Annual review of phytopathology, 47 : 265-284.
  5. Potnis, N., Minsavage, G., Smith, J. K., Hurlbert, J. C., Norman, D., Rodrigues, R., … & Jones, J. B. (2012). Avirulence proteins AvrBs7 from Xanthomonas gardneri and AvrBs1. 1 from Xanthomonas euvesicatoria contribute to a novel gene-for-gene interaction in pepper. Molecular plant-microbe interactions, 25(3) : 307-320.
  6. Jones, J. B., Minsavage, G. V., Roberts, P. D., Johnson, R. R., Kousik, C. S., Subramanian, S., & Stall, R. E. (2002). A non-hypersensitive resistance in pepper to the bacterial spot pathogen is associated with two recessive genes. Phytopathology, 92(3): 273-277.
  7. Vallejos, C. E., Jones, V., Stall, R. E., Jones, J. B., Minsavage, G. V., Schultz, D. C., … & Mazourek, M. (2010). Characterization of two recessive genes controlling resistance to all races of bacterial spot in peppers. Theoretical and applied genetics, 121(1): 37-46.

populus

  1. Mentag R. Luckevich M. Morency M.J. Seguin A. 2003. Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. Tree Physiol 23: 405–11.
  2. Cary, J.W., K. Rajasekaran, J.M. Jaynes and T.E. Cleveland. 2000. Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Sci. 154:171–181.
  3. De Lucca, A.J., J.M. Bland, C. Grimm, T.J. Jacks, J.W. Cary, J.M. Jaynes, T.E. Cleveland and T.J.Walsh. 1998. Fungicidal properties, sterol binding, and proteolytic resistance of the synthetic peptide D4E1. Can. J. Microbiol. 44:514–520.
  4. Hamel, L. P.,Miles, G. P., Samuel, M. A., Ellis, B. E., Seguin, A., and Beaudoin, N. 2005. Activation of stress-responsive nitrogen-activated protein kinase pathways in hybrid poplar (Populus trichocarpa x Populus deltoides). Tree Physiol. 25: 277–288.
  5. Duplessis, S., Major, I., Martin, F., and Séguin, A. 2009. Poplar and pathogen interactions: Insights from Populus genome-wide analyses of resistance and defense gene families and gene expression profiling. Crit. Rev. Plant Sci. 28:309-334.
  6. Pinon, J. and A. Valadon. 1995. Comportement des cultivars de peupliers commercialisables dans l’Union européenne vis-à-vis de quelques parasites majeurs. Ann. Sci. For. 54:19–38.
  7. Anonyme. 1982. Populierengids n°1. Wageningen, the Netherlands, 39 p.
  8. Anonyme. 1982. Populierengids n°2. Wageningen, the Netherlands, 40 p.
  9. Ride, M., Ride, S. 1993. Sensibilité de cultivars ou clones de peuplier à Xanthomonas populi, agent du chancre bactérien, 5 p.
  10. Koster, R. 1972. Elf nieuwe populiereklonen : ten geleide. Ned Bosb Tijdschr 238, 173-189
  11. Albrecht, J., Böden, E. 1988. Zur Krankheitsanfälligkeit von zugelassenen Pappelklonen der Sektionen Aigeiros und Tacamahaca. Holzzucht 42, 25-29
  12. Kolster, HW. 1967. Populiererassen in de EEG Landen en hun bruikbaarheid voor Nederland. Stichting Bosbouwproefstation ’De Dorschkamp’, 150p
  13. Soulères, G.1982. Informations populicoles. Rev For Fr 4, 327-328
  14. Soulères, G. 1982. Étude sur cinq nouveaux cultivars de peupliers. Forêts de France 255, 29-34
  15. Janssen, A. 1989. First results of resistance tests on different poplar clones in vitro with the bacterial canker pathogen Xanthomonas populi Ridé.Proc Meeting IUFRO working party S2.02.10, Hann Münden, 2-6 October 1989
  16. de Vries, SMG. 1987. Populus euramericana ’Koster’. Ned Bosb Tijdschr 4, 99
  17. Kechel ,HG, Böden. 1985. Resistenzprüfung an Pappeln aus Gewebekultur. Eur J For Path 15, 45-51
  18. Viart, M.1972. Note sommaire sur onze nouveaux clones néerlandais. Rev For Fr 24, 293-294

prunus

  1. Socquet-Juglard, D., Duffy, B., Pothier, J.F. et al. Tree Genetics & Genomes (2013) 9: 409.
  2. Shirasawa,K., et al. The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding. JOURNAL DNA Res. 24 (5), 499-508 (2017).
  3. Socquet-Juglard D, Kamber T, Pothier JF, Christen D, Gessler C, Duffy B, et al. (2013) Comparative RNA-Seq Analysis of Early-Infected Peach Leaves by the Invasive Phytopathogen Xanthomonas arboricola pv. pruni. PLoS ONE 8(1): e54196. https://doi.org/10.1371/journal.pone.0054196

reviews

  1. Zuluaga P, Szurek B, Koebnik R, Kroj T, Morel JB (2017). Effector mimics and integrated decoys, the never-ending arms race between rice and Xanthomonas oryzae. Front. Plant Sci. 8: 431. doi: 10.3389/fpls.2017.00431.
  2. Paulus JK, Kourelis J, van der Hoorn RAL (2017). Bodyguards: pathogen-derived decoys that protect virulence factors. Trends Plant Sci. 22(5): 355-357. doi: 10.1016/j.tplants.2017.03.004.
  3. Zhang J, Yin Z, White F (2015). TAL effectors and the executor R genes. Front. Plant Sci. 6: 641. doi: 10.3389/fpls.2015.00641.
  4. Liu W, Liu J, Triplett L, Leach JE, Wang GL (2014). Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu. Rev. Phytopathol. 52: 213-241. doi: 10.1146/annurev-phyto-102313-045926.
  5. Schornack S, Moscou MJ, Ward ER, Horvath DM (2013). Engineering plant disease resistance based on TAL effectors. Annu. Rev. Phytopathol. 51: 383-406. doi: 10.1146/annurev-phyto-082712-102255.
  6. Rafiqi M, Bernoux M, Ellis JG, Dodds PN (2009). In the trenches of plant pathogen recognition: Role of NB-LRR proteins. Semin Cell Dev Biol. 20(9): 1017-1024. doi: 10.1016/j.semcdb.2009.04.010.

soybean

  1. Narvel J M, Jakkula L R, Phillips D V, Wang T, Lee S H, Boerma, H R (2001). Molecular mapping of Rxp conditioning reaction to bacterial pustule in soybean. Journal of Heredity, 92(3) : 267-270.
  2. Kim D H, Kim K H, Van K, Kim M Y, Lee S H (2010). Fine mapping of a resistance gene to bacterial leaf pustule in soybean. Theoretical and applied genetics, 120(7): 1443-1450. doi: 10.1007/s00122-010-1266-0.
  3. Kim K H, Park J H, Kim M Y, Heu S, Lee S H (2011). Genetic mapping of novel symptom in response to soybean bacterial leaf pustule in PI 96188. Journal of Crop Science and Biotechnology, 14(2): 119-123. doi: 10.1007/s12892-011-0024-4.

tomato

  1. Yu ZH, Wang JF, Stall RE, Vallejos CE (1995). Genomic localization of tomato genes that control a hypersensitive reaction to Xanthomonas campestris pv. vesicatoria (Doidge) dye. Genetics 141:675–682
  2. Yang W, Sacks EJ, Lewis Ivey ML, Miller SA, Francis DM (2005). Resistance in Lycopersicon esculentum Intraspecific Crosses to Race T1 Strains of Xanthomonas campestris pv. vesicatoria Causing Bacterial Spot of Tomato. Phytopathology. 95: 519-527
  3. Robbins MD, Darrigues A, Sim SC, Masud MA, Francis DM (2009). Characterization of hypersensitive resistance to bacterial spot race T3 (Xanthomonas perforans) from tomato accession PI 128216. Phytopathology 99:1037-1044.
  4. Zhao B, Cao H, Duan J, Yang W (2015). Allelic Tests and Sequence Analysis of Three Genes for Resistance to Xanthomonas perforans Race T3 in Tomato. Horticultural Plant Journal. 1: 41-47.
  5. Pei C, Wang H, Zhang J, Wang Y, Francis DM, Yang W (2012). Fine mapping and analysis of a candidate gene in tomato accession PI128216 conferring hypersensitive resistance to bacterial spot race T3. Theoretical and Applied Genetics 124: 533–542.
  6. Sun HJ, Liu XX, Li WH, Yang WC (2011) Preliminary mapping of a gene in tomato accession LA1589 conferring resistance to race T3 of bacterial spot. J Agric Univ Hebei. 34: 65-69.
  7. Pei C, Wang H, Zhang J, Wang Y, Francis DM, Yang W (2012). Fine mapping and analysis of a candidate gene in tomato accession PI128216 conferring hypersensitive resistance to bacterial spot race T3. Theoretical and Applied Genetics 124: 533–542.
  8. Scott JW, Stall RE, Jones JB, Somodi GC (1996). A single gene controls the hypersensitive response of Hawaii 7981 to race 3 (T3) of the bacterial spot pathogen. Rpt Tomato Genet Coop 46:23.
  9. Astua-Monge G, Minsavage GV, Stall RE, Vallejos CE, Davis MJ, Jones JB (2000). Xv4-vrxv4: A New Gene-for-Gene Interaction Identified Between Xanthomonas campestris pv. Vesicatoria Race T3 and the Wild Tomato Relative Lycopersicon pennellii. Molecular Plant-Microbe Interactions 13: 1346-1355

wheat

  1. Tyrka, M., & Chelkowski, J. (2004). Enhancing the resistance of triticale by using genes from wheat and rye. Journal of Applied Genetics45(3), 283-296.
  2. Duveiller, E., van Ginkel, M., & Thijssen, M. (1992). Genetic analysis of resistance to bacterial leaf streak caused by Xanthomonas campestris pv. undulosa in bread wheat. Euphytica66(1-2), 35-43.
  3. Adhikari, T. B., Gurung, S., Hansen, J. M., Jackson, E. W., & Bonman, J. M. (2012). Association mapping of quantitative trait loci in spring wheat landraces conferring resistance to bacterial leaf streak and spot blotch. The Plant Genome5(1), 1-16.

rice

  1. Ogawa et al. 1989, Japan. J. Breed. 39(Suppl. 1): 196-197
  2. Tan et al. 2004, Acta Genetica Sinica 31(7): 724-729
  3. Jin et al. 2007, Sci. Agric. Sin. 40: 1094-1100
  4. Guo et al. 2010, Sci. Agric. Sin. 43(13): 2611-2618
  5. Miao et al. 2010, Sci. Agric. Sin. 43(15): 3051-3058
  6. Antony 2010, Dissertation Kansas State University
refnotes/refnotes.1580948328.txt.gz · Last modified: 2020/02/06 01:18 by 127.0.0.1