User Tools

Site Tools


Sidebar

Learn about COST & EuroXanth


Molecular Diagnosis and Diversity for Regulated Xanthomonas


Bacterial virulence factors


Plant resistance genes


List of contributors


Disclaimer

Privacy policy


DokuWiki Syntax


This DokuWiki is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology)


Follow EuroXanth on Twitter, ResearchGate or Scoop.it!

bacteria:t3e:xopak

This is an old revision of the document!


XopAK

Author: Vittoria Catara
Internal reviewer: Ralf Koebnik
Expert reviewer: FIXME

Class: XopAK
Family: XopAK
Prototype: XopAK (Xanthomonas euvesicatoria pv. euvesicatoria aka Xanthomonas campestris pv. vescicatoria; strain 85-10)
RefSeq ID: CAJ25517.1 (485 aa)
3D structure: Unknown

Biological function

How discovered?

XopAK was discovered using a machine-learning approach (Teper et al., 2016).

(Experimental) evidence for being a T3E

XopAK, fused to the AvrBs2 reporter, was shown to translocate into plant cells in an hrpF-dependent manner (Teper et al., 2016).

Regulation

Unknown.

Phenotypes

Disease severity, ion leakage, chlorophyll content of pepper plants inoculated with a mutant strain obtained by insertion mutagenesis of xopAK and in planta bacterial growth were not affected as compared to plants inoculated with the parent strain X. euvesicatoria pv. euvesicatoria (Xcv) 85-10 (Teper et al., 2016).

Localization

Unknown.

Enzymatic function

XopAK has been predicted to be a deamidase (Teper et al., 2016).

Interaction partners

Unknown.

Conservation

In xanthomonads

Yes (e.g., X. euvesicatoria, X. oryzae, X. citri, X. translucens (Teper et al., 2016; Barak et al., 2016)).

In other plant pathogens/symbionts

Yes (e.g., Ralstonia solanacearum (Teper et al., 2016), Pseudomonas syringae effector HopK1 (Li et al., 2014)).

References

Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R (2016). Whole-genome sequences of Xanthomonas euvesicatoria strains clarify taxonomy and reveal a stepwise erosion of type 3 effectors. Front. Plant Sci. 7: 1805. DOI: 10.3389/fpls.2016.01805

Li G, Froehlich JE, Elowsky C, Msanne J, Ostosh AC, Zhang C, Awada T, Alfano JR (2014). Distinct Pseudomonas type-III effectors use a cleavable transit peptide to target chloroplasts. Plant J. 77: 310-321. DOI: 10.1111/tpj.12396

Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel Xanthomonas euvesicatoria type III effector proteins by a machine‐learning approach. Mol. Plant Pathol. 17: 398-411. DOI: 10.1111/mpp.12288

bacteria/t3e/xopak.1591785653.txt.gz · Last modified: 2020/06/10 12:40 by rkoebnik