User Tools

Site Tools


bacteria:t3e:xopal2

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
bacteria:t3e:xopal2 [2020/04/16 22:55]
127.0.0.1 external edit
bacteria:t3e:xopal2 [2020/08/09 18:04] (current)
rkoebnik [References]
Line 1: Line 1:
 ====== XopAL2 ====== ====== XopAL2 ======
  
-Author: Matthieu Arlat\\ +Author: [[https://www.researchgate.net/profile/Matthieu_Arlat|Matthieu Arlat]]\\ 
-Internal reviewer: FIXME\\+Internal reviewer: [[https://www.researchgate.net/profile/Ralf_Koebnik|Ralf Koebnik]]\\
 Expert reviewer: FIXME Expert reviewer: FIXME
  
-Class: XopAL2\\ +Class: XopAL\\ 
-Family: XopAL\\+Family: XopAL2\\
 Prototype: XopAL2 (//Xanthomonas// campestris pv. //campestris// B100, gene //Xb100_0616//; Vorhölter //et al//., 2008)\\ Prototype: XopAL2 (//Xanthomonas// campestris pv. //campestris// B100, gene //Xb100_0616//; Vorhölter //et al//., 2008)\\
 RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/CAP49952.1|CAP49952.1]] (293 aa)\\ RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/CAP49952.1|CAP49952.1]] (293 aa)\\
Line 14: Line 14:
  
 === How discovered? === === How discovered? ===
-Gene annotated in the genome of //Xanthomonas// campestris pv. //campestris// B100 (XccB100) (Vorhölter //et al//., 2008). 
  
-=== (Experimental) evidence for being a T3E == +Gene annotated in the genome of //Xanthomonas// //campestris// pv. //campestris// B100 (Xcc<sub>B100</sub>) (Vorhölter //et al//., 2008). 
-No experimental evidence. Identified in XccB100 genome and annotated as XopAL2, displays 29% identity and 43% similarity with XopAL1 at the aa level.+=== (Experimental) evidence for being a T3E ===
  
 +No experimental evidence. Identified in Xcc<sub>B100</sub> genome and annotated as XopAL2, displays 29% identity and 43% similarity with XopAL1 at the amino acid sequence level.
 === Regulation === === Regulation ===
-Presence of a putative PIP box in the promoter region (M. Arlat, personnal communication).+ 
 +Presence of a putative PIP box in the promoter region (Matthieu Arlat, personnal communication).
  
 === Phenotypes === === Phenotypes ===
-Unknown. 
  
 +XopAL2 was found to be associated with variations in disease symptoms when testing a set of 45 //X. campestris //pv. //campestris// strains on two Arabidopsis natural accessions (Guy //et al.//, 2013).
 === Localization === === Localization ===
 +
 Unknown. Unknown.
  
 === Enzymatic function === === Enzymatic function ===
 +
 Unknown. Unknown.
  
 === Interaction partners === === Interaction partners ===
 +
 Unknown. Unknown.
  
Line 37: Line 41:
  
 === In xanthomonads === === In xanthomonads ===
-Yes, //X. campestris// (Roux //et al//., 2015), //X. citri// 
  
 +Yes, //X. campestris// (Roux //et al//., 2015), //X. citri//
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
-//Ralstonia solanacearum// (Rs_T3E_Hyp14; Peeters //et al//., 2013), //Erwinia amylovora// (Eop3; Nissinen //et al//., 2007, HopX1<sub>Ea</sub>; Bocsanczy //et al//., 2012), //Pseudomonas// spp. 
  
 +//Ralstonia solanacearum// (Rs_T3E_Hyp14; Peeters //et al//., 2013), //Erwinia amylovora// (Eop3; Nissinen //et al//., 2007, HopX1<sub>Ea</sub>; Bocsanczy //et al//., 2012), //Pseudomonas// spp.
 ===== References ===== ===== References =====
  
-Bocsanczy AM, Schneider DJ, DeClerck GA, Cartinhour S, Beer SV(2012). HopX1 in //Erwinia amylovora// functions as an avirulence protein in apple and is regulated by HrpL. J Bacteriol. 194 :553-560. DOI: [[https://doi.org/10.1128/JB.05065-11|10.1128/JB.05065-11]].+Bocsanczy AM, Schneider DJ, DeClerck GA, Cartinhour S, Beer SV (2012). HopX1 in //Erwinia amylovora// functions as an avirulence protein in apple and is regulated by HrpL. J Bacteriol. 194: 553-560. DOI: [[https://doi.org/10.1128/JB.05065-11|10.1128/JB.05065-11]]
 + 
 +Guy E, Genissel A, Hajri A, Chabannes M, David P, Carrere S, Lautier M, Roux B, Boureau T, Arlat M, Poussier S, Noël LD (2013). Natural genetic variation of //Xanthomonas campestris// pv. //campestris// pathogenicity on //Arabidopsis// revealed by association and reverse genetics. mBio 4: e00538-12. DOI: [[https://doi.org/10.1128/mBio.00538-12|10.1128/mBio.00538-12]]. Erratum in: MBio (2013) 4: e00978-13.
  
-Nissinen RM, Ytterberg AJ, Bogdanove AJ, VAN Wijk KJ, Beer SV(2007). Analyses of the secretomes of //Erwinia amylovora// and selected hrp mutants reveal novel type III secreted proteins and an effect of HrpJ on extracellular harpin levels. Mol Plant Pathol. 8:55-67. DOI: [[https://doi.org/10.1111/j.1364-3703.2006.00370.x|10.1111/j.1364-3703.2006.00370.x]].+Nissinen RM, Ytterberg AJ, Bogdanove AJ, Van Wijk KJ, Beer SV (2007). Analyses of the secretomes of //Erwinia amylovora// and selected //hrp// mutants reveal novel type III secreted proteins and an effect of HrpJ on extracellular harpin levels. MolPlant Pathol. 8: 55-67. DOI: [[https://doi.org/10.1111/j.1364-3703.2006.00370.x|10.1111/j.1364-3703.2006.00370.x]].
  
-Peeters N, Carrère S, Anisimova M, Plener L, Cazalé AC, Genin S(2013). Repertoire, unified nomenclature and evolution of the Type III effector gene set in the //Ralstonia solanacearum// species complex. BMC Genomics14: 859. DOI: [[https://doi.org/10.1186/1471-2164-14-859|10.1186/1471-2164-14-859]].+Peeters N, Carrère S, Anisimova M, Plener L, Cazalé AC, Genin S (2013). Repertoire, unified nomenclature and evolution of the type III effector gene set in the //Ralstonia solanacearum// species complex. BMC Genomics 14: 859. DOI: [[https://doi.org/10.1186/1471-2164-14-859|10.1186/1471-2164-14-859]].
  
-Roux B, Bolot S, Guy E, Denancé N, Lautier M, Jardinaud MF, Fischer-Le Saux M, Portier P, Jacques MA, Gagnevin L, Pruvost O, Lauber E, Arlat M, Carrère S, Koebnik R, Noël LD (2015). Genomics and transcriptomics of //Xanthomonas campestris// species challenge the concept of core type III effectome. BMC Genomics16: 975. DOI: [[https://doi.org/10.1186/s12864-015-2190-0|10.1186/s12864-015-2190-0]].+Roux B, Bolot S, Guy E, Denancé N, Lautier M, Jardinaud MF, Fischer-Le Saux M, Portier P, Jacques MA, Gagnevin L, Pruvost O, Lauber E, Arlat M, Carrère S, Koebnik R, Noël LD (2015). Genomics and transcriptomics of //Xanthomonas campestris// species challenge the concept of core type III effectome. BMC Genomics 16: 975. DOI: [[https://doi.org/10.1186/s12864-015-2190-0|10.1186/s12864-015-2190-0]].
  
-Vorhölter FJ, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T, Rückert C, Schmid J, Sidhu VK, Sieber V, Tauch A, Watt SA, Weisshaar B, Becker A, Niehaus K, Pühler A(2008). The genome of //Xanthomonas campestris// pv. //campestris// B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol. 134: 33-45. DOI: [[https://doi.org/10.1016/j.jbiotec.2007.12.013]].+Vorhölter FJ, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T, Rückert C, Schmid J, Sidhu VK, Sieber V, Tauch A, Watt SA, Weisshaar B, Becker A, Niehaus K, Pühler A (2008). The genome of //Xanthomonas campestris// pv. //campestris// B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol. 134: 33-45. DOI: [[https://doi.org/10.1016/j.jbiotec.2007.12.013|https://doi.org/10.1016/j.jbiotec.2007.12.013]].
  
bacteria/t3e/xopal2.1587070519.txt.gz · Last modified: 2020/04/16 22:55 by 127.0.0.1