User Tools

Site Tools


Sidebar

Learn about COST & EuroXanth


Molecular Diagnosis and Diversity for Regulated Xanthomonas


Bacterial virulence factors


Plant resistance genes


List of contributors


Disclaimer

Privacy policy


DokuWiki Syntax


This DokuWiki is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology)


Follow EuroXanth on Twitter, ResearchGate or Scoop.it!

bacteria:t3e:xopal2

This is an old revision of the document!


XopAL2

Author: Matthieu Arlat
Internal reviewer: FIXME
Expert reviewer: FIXME

Class: XopAL
Family: XopAL2
Prototype: XopAL2 (Xanthomonas campestris pv. campestris B100, gene Xb100_0616; Vorhölter et al., 2008)
RefSeq ID: CAP49952.1 (293 aa)
3D structure: Unknown

Biological function

How discovered?

Gene annotated in the genome of Xanthomonas campestris pv. campestris B100 (XccB100) (Vorhölter et al., 2008).

(Experimental) evidence for being a T3E

No experimental evidence. Identified in XccB100 genome and annotated as XopAL2, displays 29% identity and 43% similarity with XopAL1 at the aa level.

Regulation

Presence of a putative PIP box in the promoter region (M. Arlat, personnal communication).

Phenotypes

Unknown.

Localization

Unknown.

Enzymatic function

Unknown.

Interaction partners

Unknown.

Conservation

In xanthomonads

Yes, X. campestris (Roux et al., 2015), X. citri

In other plant pathogens/symbionts

Ralstonia solanacearum (Rs_T3E_Hyp14; Peeters et al., 2013), Erwinia amylovora (Eop3; Nissinen et al., 2007, HopX1Ea; Bocsanczy et al., 2012), Pseudomonas spp.

References

Bocsanczy AM, Schneider DJ, DeClerck GA, Cartinhour S, Beer SV. (2012). HopX1 in Erwinia amylovora functions as an avirulence protein in apple and is regulated by HrpL. J Bacteriol. 194 :553-560. DOI: 10.1128/JB.05065-11.

Nissinen RM, Ytterberg AJ, Bogdanove AJ, VAN Wijk KJ, Beer SV. (2007). Analyses of the secretomes of Erwinia amylovora and selected hrp mutants reveal novel type III secreted proteins and an effect of HrpJ on extracellular harpin levels. Mol Plant Pathol. 8:55-67. DOI: 10.1111/j.1364-3703.2006.00370.x.

Peeters N, Carrère S, Anisimova M, Plener L, Cazalé AC, Genin S. (2013). Repertoire, unified nomenclature and evolution of the Type III effector gene set in the Ralstonia solanacearum species complex. BMC Genomics. 14: 859. DOI: 10.1186/1471-2164-14-859.

Roux B, Bolot S, Guy E, Denancé N, Lautier M, Jardinaud MF, Fischer-Le Saux M, Portier P, Jacques MA, Gagnevin L, Pruvost O, Lauber E, Arlat M, Carrère S, Koebnik R, Noël LD (2015). Genomics and transcriptomics of Xanthomonas campestris species challenge the concept of core type III effectome. BMC Genomics. 16: 975. DOI: 10.1186/s12864-015-2190-0.

Vorhölter FJ, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T, Rückert C, Schmid J, Sidhu VK, Sieber V, Tauch A, Watt SA, Weisshaar B, Becker A, Niehaus K, Pühler A. (2008). The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol. 134: 33-45. DOI: https://doi.org/10.1016/j.jbiotec.2007.12.013.

bacteria/t3e/xopal2.1593761974.txt.gz · Last modified: 2020/07/03 09:39 by rkoebnik